Cho hình chóp S.ABC có đáy là tam giác ABC đều cạnh 3a, cạnh bên SC=2a và SC vuông góc với mặt phẳng đáy. Tính thể tích của khối cầu ngoại tiếp hình chóp S.ABC
Cho hình hộp đứng ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a và góc BAD= 60 o AB’ hợp với đáy (ABCD) một góc 30 o Thể tích khối hộp là:
Cho khối chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh bằng 1, SA=1 và SA ⊥ (ABC) . Tính thể tích của khối chóp đã cho.
cho hình chóp sabcd có đáy abcd là hình thoi canh a góc abc=60. tam giác abc đều , tam giác sbd cân tại s a, cm so vuông góc với abcd b, CM mặt phẳng SAC vuông với mp SBD c, Tính góc giữa SCD và ABCD
Cho lăng trụ đứng tam giác ABC.A'B'C' có đáy ABC là tam giác vuông cân tại B với BA=BC=a biết măṭ phẳng ( A’BC) hợp với măṭ phẳng đáy ( ABC) một góc 60 o Tính thể tích khối lăng trụ đã cho.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích bằng 1. Trên cạnh SC lấy điểm E sao cho SE=2EC. Tính thể tích V của khối tứ diện SEBD.
Cho hình chóp tứ giác S.ABCD với hai đường thẳng AB và CD cắt nhau. Gọi A’ là một điểm nằm giữa hai điểm S và A. Tìm thiết diện của hình chóp khi cắt bởi mặt phẳng (A’CD).
Một bình đựng nước dạng hình nón (không có đáy), đựng đầy nước. Người ta thả vào đó một khối cầu không thấm nước, có đường kính bằng chiều cao của bình nước và đo được thể tích nước tràn ra ngoài là V. Biết rằng khối cầu tiếp xúc với tất cả các đường sinh của hình nón và đúng một nửa của khối cầu chìm trong nước (hình bên). Tính thể tích nước còn lại trong bình.
Cho chóp S.ABC có SA, SB, SC đôi môṭ vuông góc và có Tính khoảng cách từ S đến mặt phẳng (ABC).