PB

Cho hình chóp S . A B C D có đáy ABCD là hình bình hành. Gọi M là điểm trên cạnh SC sao cho 5 S M = 2 S C , mặt phẳng α qua A, M và song song với đường thẳng BD cắt hai cạnh SB, SD lần lượt tại H, K. Tính tỉ số thể tích  V S . A H M K V S . A B C D

A.  1 5

B.  8 35

C.  1 7

D.  6 35

CT
21 tháng 10 2017 lúc 8:28

Đáp án D

Gọi O là tâm của hình bình hành ABCD, nối  S O ∩ A M = I

Qua I kẻ đương thẳng d, song song với BD cắt SB, SD lần lượt tại H, K suy ra S H S B = S K S D = S I S O .  

Điểm M ∈ S C thỏa mãn  5 S M = 2 S C ⇒ S M S C = 2 5

Xét tam giác SAC, có:

M S M C . A C A O . I O I   S = 1 ⇒ I O S I = 4 3 ⇒ S I S O = 3 7

Khi đó:

V S . A K M V S . A D C = S K S D . S M S C ; V S . A H M V S . A B C = S H S B . S M S C  

Suy ra:

V S . A H M K V S . A B C D = S M S C . S H S B = 2 5 . 3 7 = 6 35 ⇒ V S . A H M K = 6 36 V S . A B C D

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết