Đáp án D
Gọi M, N lần lượt thuộc cạnh SB,SC sao cho S M = S N = 2.
Tam giác SMN đều ⇒ S M = S N = M N = 2.
Tam giác SAM có AS M ^ = 45 ∘ ⇒ A M = 2 2 − 2 .
Tam giác SAN vuông cân tại S ⇒ A N = S A 2 = 2 2 .
Gọi I là tâm đường tròn ngoại tiếp tam giác ABC ⇒ S I ⊥ A M N .
Tính bán kính đường tròn ngoại tiếp Δ A M N . Diện tích tam giác AMN là
S = p p − A M p − A N p − M N ⇒ R Δ A M N = A M . A N . M N 4 S = 2 4 − 2 2 S Δ A M N ,
với p = A M + A N + M N 2 .
Tam giác SAI vuông tại I, có S I = S A 2 − I A 2 = 4 − R 2 Δ A M N .
Ta có V S . A M N V S . A B C = S M S B . S N S C = 2 3 . 2 4 = 1 3 ⇒ V S . A B C = 3 V S . A M N ⇒ d B ; S A C = 9 V S . A M N S Δ S A C = 3 2 .