PB

Cho hình chóp S . A B C  có M  là điểm di động trên cạnh SA sao cho S M S A = k . Gọi (α) là mặt phẳng đi qua M và song song với mặt phẳng A B C . Tìm k để mặt phẳng (α) cắt hình chóp S . A B C  theo một thiết diện có diện tích bằng một nửa diện tích tam giác ABC.

A. k = 2 2 .

B. k = 1 2 .

C. k = 3 2 .

D. k = 1 3 .

CT
12 tháng 4 2017 lúc 16:23

Đáp án A

Gọi N, P là hai điểm lần lượt thuộc S B , S C  thỏa mãn M N / / A B , M P / / A C .

Ta có M N // A B ⇒ M N // A B C M P // A C ⇒ M P // A B C ⇒ M N P / / A B C .

Gọi h 1  là đường cao của ΔMNP ứng với đáy MN.

Gọi h 2  là đường cao của ΔABC ứng với đáy AB.

Dễ thầy ΔMNP đồng dạng ΔABC ta có M N A B = h 1 h 2 = k .

Vậy để thỏa mãn yêu cầu bài toán

S Δ M N P S Δ A B C = 1 2 h 1 . M N 1 2 h 2 . A B = 1 2 ⇔ k . k = 1 2 ⇔ k = 2 2

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết