PG

Cho hình chóp đều \(S.ABCD\) có cạnh đáy bằng \(2\), cạnh bên bằng \(2\sqrt[]{2}\) Gọi \(\alpha\) là góc tạo bởi hai mặt phẳng \(\left(SAC\right)\)\(\left(SAB\right)\). Khi đó \(cos\alpha\) bằng

AH
26 tháng 7 2021 lúc 23:27

Lời giải:
Gọi $O$ là tâm đáy thì $SO\perp (ABCD)$

Ta thấy:

$BO\perp AC, BO\perp SO\Rightarrow BO\perp (AC, SO)$

Hay $BO\perp (SAC)(*)$

Gọi $T$ là trung điểm $AB$, $OH\perp ST$. 

$OT\perp AB$

$SO\perp AB$

$\Rightarrow (SOT)\perp AB$

$\Rightarrow OH\perp AB$

Mà $OH\perp ST$

$\Rightarrow OH\perp (AB, ST)$ hay $OH\perp (SAB)(**)$

Từ $(*); (**)\Rightarrow \cos a=\cos \widehat{HOB}$

Trong đó:
$BO=\frac{2\sqrt{2}}{2}=\sqrt{2}$

$SO=\sqrt{SB^2-BO^2}=\sqrt{(2\sqrt{2})^2-(\sqrt{2})^2}=\sqrt{6}$

$ST=\sqrt{SO^2+OT^2}=\sqrt{6+1}=\sqrt{7}$

$OH=\frac{SO.OT}{ST}=\frac{\sqrt{6}.1}{\sqrt{7}}=\sqrt{\frac{6}{7}}$

Vì $OH\perp (SAB)$ nên tam giác $BHO$ vuông tại $H$. Do đó:
$\cos a=\cos \widehat{HOB}=\frac{HO}{OB}=\frac{\sqrt{6}}{\sqrt{7}.\sqrt{2}}=\frac{\sqrt{3}}{\sqrt{7}}$


 

Bình luận (0)