LV

cho hình chóp đều SABC cạnh đáy bằng a. G là trọng tâm của tam giác ABC. Góc giữa SB và đáy là 30°. Mặt phẳng (P) chứa BC và vuông góc với SA chia khối chóp SABC thành 2 phần. Tỉ số thể tích 2 phần là

HQ
9 tháng 7 2021 lúc 21:24

hình như đáp số hơi xấu thì phải bạn ạ? :D có gì check lại các phép toán hộ mình nhé

Hình vẽ minh họa và các thao tác vẽ hình ở bên dưới 

Dễ tính: \(SK=\sqrt{SB^2-BK^2}=\dfrac{a\sqrt{7}}{6}\) 

Ta lại có: \(S_{SAK}=\dfrac{1}{2}SG.AK=\dfrac{1}{2}HK.SA\) 

\(\Rightarrow HK=\dfrac{SG.AK}{SA}=\dfrac{a}{3}\) Trong đó: \(SG=\dfrac{a}{3};AK=\dfrac{2a}{3};SA=SB=SC=\dfrac{2a}{3}\) ( Tam giác SAK cân tại A )

\(\Rightarrow SH=\sqrt{SK^2-HK^2}=\dfrac{a\sqrt{3}}{6}\)

Theo định lý Symson: \(\dfrac{S_{SHBC}}{S_{SABC}}=\dfrac{SH}{SA}=\dfrac{\sqrt{3}}{4}\Rightarrow S_{SHBC}=\dfrac{\sqrt{3}}{4}S_{SABC}\) (1)

\(\Rightarrow S_{HABC}=\left(\dfrac{4-\sqrt{3}}{4}\right)S_{SABC}\) (2) 

Từ (1) và (2) suy ra được tỉ lệ thể tích giữa 2 phần là: \(\dfrac{3+4\sqrt{3}}{13}\) 

undefined

 

Bình luận (0)

Các câu hỏi tương tự
LV
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
LV
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết