Cho hình chóp cụt ABC.A′B′C′ có hai đáy ABC và A′B′C′ có diện tích lần lượt là S 1 và S 2 . Mặt phẳng (ABC′) chia hình chóp cụt thành hai phần, Tính tỉ số thể tích hai phần đó.
A. S 2 S 1 + S 1 S 2
B. S 1 S 2 + S 1 S 2
C. S 1 S 2 − S 1 S 2
D. S 2 S 1 − S 1 S 2
Cho hình nón đỉnh O, I là tâm đường tròn đáy. Mặt trung trực của OI chia khối chóp thành hai phần. Tỉ số thể tích của hai phần chứa đỉnh S và phần không chứa S là:
A. 1 8
B. 1 2
C. 1 4
D. 1 7
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và S A ⊥ A B C D . Trên đường thẳng vuông góc với (ABCD) lấy điểm S' thỏa mãn S ' D = 1 2 S A và S, S’ ở cùng phía đối với mặt phẳng (ABCD). Gọi V 1 là thể tích phần chung của hai khối chóp S.ABCD và S’.ABCD . Gọi V 2 là thể tích khối chóp S.ABCD. Tỉ số V 1 V 2 bằng
A. 7 18
B. 1 3
C. 7 9
D. 4 9
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và S A ⊥ A B C D . Trên đường thẳng vuông góc với A B C D tại D lấy điểm S’ thỏa mãn S ' D = 1 2 S A và S, S’ ở cùng phía đối với mặt phẳng (ABCD). Gọi V 1 là thể tích phần chung của hai khối chóp S.ABCD và S’.ABCD. Gọi V 2 là thể tích khối chóp S.ABCD, tỉ số V 1 V 2 bằng
A. 1 2
B. 1 3
C. 2 2
D. 1 4
Cho khối chóp cụt ABC A'B'C' với hai đáy ABC và A'B'C' có diện tích lần lượt bằng 4 và 9. Mặt phẳng (ABC') chia khối chóp cụt thành hai phần. Gọi H 1 là phần chứa đỉnh C và H 2 là phần còn lại. Tính tỉ số thể tích H 1 và H 2 .
A. 2 5
B. 3 5
C. 9 10
D. 4 15
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O cạnh bằng a, A B C ^ = 60 ° , S A = S B = S C , S D = 2 a . Gọi (P) là mặt phẳng qua A và vuông góc với SB tại K. Mặt phẳng (P) chia khối chóp S.ABCD thành hai phần có thể tích V 1 , V 2 trong đó V 1 là thể tích khối đa diện chứa đỉnh S. Tính V 1 V 2
A. 11
B. 7
C. 9
D. 4
Cho hình chóp S.ABCD có đáy là hình vuông, mặt bên (SAB) là một tam giác đều nằm trong mặt phẳng vuông góc với mặt đáy (ABCD) và có diện tích bằng 27 3 4 (đvdt). Một mặt phẳng đi qua trọng tâm tam giác SAB và song song với mặt đáy (ABCD) chia khối chóp S.ABCD thành hai phần, tính thể tích V của phần chứa điểm S?
A. V = 24
B. V = 8
C. V = 12
D. V = 36
Cho hình chóp S.ABCD có đáy là hình vuông, mặt bên (SAB) là một tam giác đều nằm trong mặt phẳng vuông góc với mặt đáy (ABCD) và có diện tích bằng 27 3 4 (đvdt). Một mặt phẳng đi qua trọng tâm tam giác SAB và song song với mặt đáy (ABCD) chia khối chóp S.ABCD thành hai phần, tính thể tích V của phần chứa điểm S?
A. V = 24
B. V = 8
C. V = 12
D. V = 36
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi K,M lần lượt là trung điểm của các đoạn thẳng SA, SB, (α) là mặt phẳng qua K song song với AC và AM. Mặt phẳng (α) chia khối chóp S.ABCD thành hai khối đa diện. Gọi V 1 là thể tích của khối đa diện chứa đỉnh S và V 2 là thể tích khối đa diện còn lại. Tính tỉ số V 1 V 2
A. V 1 V 2 = 7 25
B. V 1 V 2 = 5 11
C. V 1 V 2 = 7 17
D. V 1 V 2 = 9 23