Cho hình cầu (S) tâm I bán kính R. Một mặt phẳng (P) cắt mặt cầu (S) theo đường tròn giao tuyến (L). Khối nón đỉnh I và đáy là đường tròn (L) có thể tích lớn nhất là a π R 3 b 3 ( a , b ∈ N ) . Hỏi a+ b bằng?
A. 10
B. 9
C. 11
D. 13
Mặt cầu tâm I bán kính R=11 cm cắt mặt phẳng (P) theo giao tuyến là một đường tròn đi qua ba điểm A, B, C. Biết AB=8cm, AC=6cm, BC=10cm. Tính khoảng cách d từ I đến mặt phẳng (P)
A. d= 21 cm
B. d= 146 cm
C. d= 4 6 cm
D. d= 4 cm
Cho hình nón có đường sinh bằng đường kính đáy và bằng 2. Bán kính của mặt cầu ngoại tiếp hình nón đó là
Trong không gian a và b có thể cắt nhau và cùng thuộc mặt phẳng song song với mặt phẳng đã cho.
Cho mặt cầu (S) tâm O, bán kính R. Xét mặt phẳng (P) thay đổi cắt mặt cầu theo giao tuyến là đường tròn (C) Hình trụ (T) nội tiếp mặt cầu (S) có một đáy là đường tròn (C)và có chiều cao là h(h>0) Tính h để khối trụ (T) có giá trị lớn nhất
Cho tam giác đều ABC cạnh a. Gọi (P) là mặt phẳng chứa BC và vuông góc với mặt phẳng (ABC). Trong (P), xét đường tròn (C) đường kính BC. Diện tích mặt cầu nội tiếp hình nón có đáy là (C), đỉnh là A bằng
A . πa 2 2
B . πa 2 3
C . πa 2
D . 2 πa 2
Cho mặt cầu (S) tâm O, bán kính bằng 2 và mặt phẳng (P). Khoảng cách từ O đến (P) bằng 4. Từ điểm M thay đổi trên (P) kẻ các tiếp tuyến MA, MB, MC tới (S) với A, B, C là các tiếp điểm. Biết mặt phẳng (ABC) luôn đi qua một điểm I cố định. Tính độ dài đoạn OI.
A. 3
B. 3 2
C. 1 2
D. 1
Cho hình nón tròn xoay có đường cao h = 40 (cm), bán kính đáy r = 50 (cm). Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện là 24 (cm). Tính diện tích của thiết diện
A. S = 800 c m 2
B. S = 1200 c m 2
C. S = 1600 c m 2
D. S = 2000 c m 2
Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính đáy bằng chiều cao và bằng 2a. Trên đường tròn đáy tâm O lấy điểm A, trên đường tròn tâm O’ lấy điểm B. Đặt α là góc giữa AB và đáy. Biết rằng thể tích khối tứ diện OO’AB đạt giá trị lớn nhất. Khẳng định nào sau đây là đúng ? Tính bán kính mặt cầu ngoại tiếp hình chóp theo a.
A. tan α = 2
B. tan α = 1 2
C. tan α = 1 2
D. tan α = 1
Cho hình chóp S.ABC có ABC là tam giác vuông cân tại B, AB = BC = 2a, S A B ^ = S C B ^ = 90 ° . Và khoảng cách từ A đến mặt phẳng (SBC) bằng a 2 Tính diện tích mặt cầu ngoại tiếp S.ABC theo a.