HN

Cho hình bình hành ABCD. Trên cạnh AB lấy điểm E và trên cạnh CD lấy điểm F sao cho AE = CF. Trên cạnh AD lấy điểm M và trên cạnh BC lấy điểm N sao cho AM = CN.

a) Tứ giác MENF là hình gì? Vì sao?

b) Chứng minh các đường thẳng AC;BD;EF và MN đồng quy tại 1 điểm.

ZZ
21 tháng 8 2019 lúc 17:04

A B C D E F M N O

Gọi O là giao điểm 2 đường chéo AC và BD

Xét \(\Delta\)AOE và \(\Delta\)COF có:AO=OC ( vì ABCD là hình bình hành ),CF=AE ( giả thiết ),^AOE=^COF ( đối đỉnh )

a

Vì vậy \(\Delta AOE=\Delta COF\left(c.g.c\right)\Rightarrow OE=OF\left(1\right)\)

Xét \(\Delta\)BON và \(\Delta\)DOM có:OB=OD ( vì ABCD là hình bình hành ),MD=BN ( vì AM=CN ),^MOD=^NOB ( đối đỉnh )

Vì vậy \(\Delta BON=\Delta COM\left(c.g.c\right)\Rightarrow OM=ON\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\) suy ra tứ giác EMFN là hình bình hành.

b

Hình bình hành EMFN có O là giao điểm của 2 đường chéo,tứ giác ABCD có O là giao điểm của 2 đường chéo.

=> ĐPCM

P/S:Mik ko chắc lắm đâu nha,nhất là câu b ý:p

Bình luận (0)

Các câu hỏi tương tự
KM
Xem chi tiết
KM
Xem chi tiết
ND
Xem chi tiết
N3
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết
PB
Xem chi tiết
MD
Xem chi tiết
NA
Xem chi tiết