PB

Cho hình bình hành ABCD. Trên các cạnh AB và CD lần lượt lấy các điểm MvàN sao cho AM = DN. Đường trung trực của BM lần lượt cắt các đường thẳng MNBC tại E và F.

a) Chứng minh E và F đối xứng với nhau qua AB.

b) Chứng minh tứ giác MEBF là hình thoi

          c) Hình bình hành ABCD có thêm điều kiện gì để tứ giác BCNE là hình thang cân.

CT
20 tháng 3 2017 lúc 15:55

a) Do AM = DN Þ MADN là hình bình hành

⇒   D ^ = A M N ^ = E M B ^ = M B C ^  

Ta có DMPE = DBPE nên EP = FP. Vậy MEBF là hình thoi và 2 điểm E, F đối xứng nhau qua AB.

b) Tứ giác MEBF có MB Ç EF = P; Lại có P trung điểm BM, P là trung điểm EF, MB ^ EF.

Þ  MEBF là hình thoi.

c) Để BNCE là hình thang cân thì C N E ^ = B E N ^  

C N E ^ = D ^ = M B C ^ = E B M ^  nên DMEB có 3 góc bằng nhau, suy ra điều kiện để BNCE là hình thang cân thì  A B C ^ = 60 0

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
TX
Xem chi tiết
NN
Xem chi tiết
CT
Xem chi tiết
CN
Xem chi tiết
TQ
Xem chi tiết
H24
Xem chi tiết
CJ
Xem chi tiết
NV
Xem chi tiết