Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BC
a) Chứng minh : Tứ giác EHMN là hình thang cân
b) Chứng minh: HE ⊥ HN
c) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoi
d) Chứng minh: AM, EN,BF và KC đồng quy
Bài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ BD)
a) Chứng minh: Tứ giác AFCE là hình bình hành
b) Cho AF cắt BC tại M, CE cắt AD tại N. Chứng minh: M,O,N thẳng hàng
c) Lấy K đối xứng C qua E. Xác định vị trí của E trên OD để tứ giác AKDO là hình bình hành
d) Lấy I đối xứng với A qua D, lấy H đối xứng A qua B. Hình Bình hành ABCD phải có thêm điều kiện gì để I và H đối xứng với nhau qua đường thẳng AC?
MÌNH CẦN GẤP!! CÁC BẠN GIÚP MÌNH NHA!!!
Cho hình chữ nhật ABCD, O là giao điểm hai đường chéo. M thuộc CD và N thuộc AB sao cho DM = BN.
a) Chứng minh ANCM là hình bình hành, từ đó suy ra các điểm M, O, N thẳng hàng.
b) Qua M kẻ đuờng thẳng song song vói AC cắt AD ở E, qua N kẻ đường thẳng song song với AC cắt BC ở F. Chứng minh tứ giác ENFM là hình bình hành.
c) Tìm vị trí của điểm M, N để ANCM là hình thoi.
d) BD cắt NF tại I. Chứng minh I là trung điểm của NF
Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BC
a) Chứng minh : Tứ giác EHMN là hình thang cân
b) Chứng minh: HE ⊥ HN
c) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoi
d) Chứng minh: AM, EN,BF và KC đồng quy
Bài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ BD)
a) Chứng minh: Tứ giác AFCE là hình bình hành
b) Cho AF cắt BC tại M, CE cắt AD tại N. Chứng minh: M,O,N thẳng hàng
c) Lấy K đối xứng C qua E. Xác định vị trí của E trên OD để tứ giác AKDO là hình bình hành
d) Lấy I đối xứng với A qua D, lấy H đối xứng A qua B. Hình Bình hành ABCD phải có thêm điều kiện gì để I và H đối xứng với nhau qua đường thẳng AC?
1 ) Cho tam giác ABC . Phân giác góc A cắt cạnh BC tại d . Qua d vẻ đường thẳng song song với AB , đường này cắt AC tại E . Đường thẳng qua E // BC cắt AB tại F
- Chứng minh : AE = BF
2) Cho hình bình hành ABCD . Gọi MNPQ theo thứ tự là trung điểm của cạnh AB , BC , CD , DA đường thẳng AN cắt DM , BP theo thứ tự tại E và F . Đường thẳng CQ cắt BP , DM theo thứ tự G , H
A) chứng minh : tứ giác EFGH là hình bình hành
B ) chứng minh : các đường thẳng AC , BD , EG, FH đồng quy tại một điểm
Cho tam giác ABC có cạnh BC = m. Trên cạnh AB lấy các điểm D, E sao cho AD = DE = EB. Từ D, E kẻ các đường thẳng song song với BC, cắt cạnh AC theo thứ tự ở M và N. Tính độ dài các đoạn thẳng DM và EN theo m
Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F.
a) Chứng minh ED/AD + BF/BC = 1
b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.
Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC ở F.
a) Chứng minh CF = DK
b) Gọi H là trực tâm của tam giác ABC. Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự ở I và K’. Qua C kẻ đường thẳng song song với IK’, cắt AH và AB theo thứ tự ở N và P. Chứng minh NC = NP và HI = HK’.
Bài 8: Cho tam giác ABC, điểm M bất kì trên cạnh AB. Qua M kẻ đường thẳng song song với BC cắt AC ở N biết AM = 11 cm, MB = 8 cm, AC = 38 cm. Tính độ dài các đoạn thẳng AN, NC.
Bài 9: Cho góc xAy, trên tia Ax lấy hai điểm D và E, trên tia Ay lấy hai điểm F và G sao cho FD song song với EG. Đường thẳng qua G song song với FE cắt tia Ax tại H. Chứng minh AE 2 = AD.AH.
Bài 10: Cho hình bình hành ABCD. Gọi E là một điểm bất kì trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ quá F song song với BD cắt CD ở G. Chứng minh AH.CD = AD.CG.
Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BC
a) Chứng minh : Tứ giác EHMN là hình thang cân
b) Chứng minh: HE ⊥ HN
c) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoi
d) Chứng minh: AM, EN,BF và KC đồng quy
Bài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ BD)
a) Chứng minh: Tứ giác AFCE là hình bình hành
b) Cho AF cắt BC tại M, CE cắt AD tại N. Chứng minh: M,O,N thẳng hàng
c) Lấy K đối xứng C qua E. Xác định vị trí của E trên OD để tứ giác AKDO là hình bình hành
d) Lấy I đối xứng với A qua D, lấy H đối xứng A qua B. Hình Bình hành ABCD phải có thêm điều kiện gì để I và H đối xứng với nhau qua đường thẳng AC?
Giúp mình với mình đang cần gấp! Cảm ơn mọi người nha!
Cho hình chữ nhật ABCD, O là giao điểm 2 đường chéo, Lấy E thuộc cạnh CD, EO cắt AB tại F. Đường thẳng qua E song song với AC cắt AD tại M, đường thẳng qua E song song với BD cắt BC tại N.
a) Chứng minh tứ giác BEDF là hình bình hành
b) Chứng minh tứ giác MÈN là hình bình hành
c) Chứng minh ba điểm M , O, N thẳng hàng
d) Gọi I là giao điểm của NF và BD. Chứng minh I là trung điểm NF
Cho hình chữ nhật ABCD, O là giao điểm 2 đường chéo, Lấy E thuộc cạnh CD, EO cắt AB tại F. Đường thẳng qua E song song với AC cắt AD tại M, đường thẳng qua E song song với BD cắt BC tại N.
a) Chứng minh tứ giác BEDF là hình bình hành
b) Chứng minh tứ giác MÈN là hình bình hành
c) Chứng minh ba điểm M , O, N thẳng hàng
d) Gọi I là giao điểm của NF và BD. Chứng minh I là trung điểm NF