Cho hình bình hành ABCD. Đường thẳng qua A cắt tia CD, tia CB và cắt đường thẳng BD lần lượt tại G,K và E (G,K và E nằm ngoài các đoạn thẳng CD, CB và BD). Chứng minh EA^2= EK.EG
Cho hình bình hành ABCD . Qua đỉnh A kẻ đường thẳng song song với đường chéo BD cắt các tia CB và CD lần lượt tại E và F. Chứng minh rằng các đường thẳng AC, DE và BF đồng quy.
Cho hình bình hành ABCD. Từ A kẽ đường thẳng song song với đường chéo BD cắt tia CB,CD lần lượt tại E và F. chứng minh AEBD, ABDF là hình bình hành
Cho hình bình hành ABCD. Qua A vẽ tia Ax cắt đường chéo BD tại E cắt cạnh BC tại F và cắt đường thẳng DC tại G. Chứng minh rằng tích BF. DG không đổi.
Bài 1: Cho hình bình hành ABCD có BD = 8cm, O là giao điểm của hai đường chéo. E, M thuộc cạnh CD sao cho: DE = EM = MC, AE cắt BD tại K, OM cắt AB tại F. CMR:
a) AF = 1/3 AB
b) Tính DK
Bài 2: Cho hình bình hành ABCD. Trên tia đối của tia BC lấy điểm E sao cho BE = BC. Trên tia đối của tia BC lấy điểm F sao cho CD = CF. CMR: các đoạn thẳng AC, ED và BF đồng quy.
Cho hình bình hành ABCD.Qua A vẽ một đường thẳng sao cho đường thẳng này cắt đường chéo BD ở P và cắt DC,BC lần lượt ở M,N a, Chứng minh AP/AM+AP/AN=1 b,có tồn tại hệ thức AP/AM+AP/AN=1 hay không khi đường thẳng vẽ qua A cắt các tia CD,CB,DB lần lượt tại M,N,P? vì sao?
Bài 1: Cho hình bình hành ABCD. Vẽ tia Bx vuông góc với AC, Dy vuông góc với AC. Đường thẳng qua A vuông góc với BD cắt Bx tại P, cắt Dy tại Q. Đường thẳng qua C vuông góc với BD cắt Bx tại N, cắt Dy tại M. Đường thẳng NQ cắt AD ở E, BC ở F. CMR: MNPQ, MEPF là hình bình hành.
Bài 2: Cho tứ giác ABCD có AD = BC, góc C và góc D tù. Gọi M, N, P, Q lần lượt là trung điểm AB, AC, CD, BD. MNPQ là hình gì? Chứng minh.
Cho hình bình hành ABCD. Điểm I thuộc CD,tia AI cắt tia Bc tại K.Chứng minh AB.AD=KB.ID
Cho hình bình hành ABCD O là giao điểm 2 đường chéo ac và bd. Qua o vẽ đường thẳng a cắt ad và bc tại e và f đường thẳng b cắt ab và cd tại k và h . CMR ekfh là hình bình hành