PB

Cho hình bình hành ABCD. Gọi P, Q, R, S lần lượt là trung điểm của các cạnh CD, DA, AB, BC. Đoạn DR cắt CQ, CA, SA theo thứ tự tại H, I, G. Đoạn BP cắt SA, AC, CQ theo thứ tự tại F, J, E. Chứng minh:

a) Tứ giác EFGH là hình bình hành;

b)AI = IJ = JC;

c)  S E F G H = 1 5 S A B C D

CT
12 tháng 8 2018 lúc 1:56

a) EFGH là hình bình hành (các cặp cạnh đối song song)

b) Tam giác CID có PJ//ID và P là trung điểm của CD.

Þ J là trung điểm của CI Þ JC = IJ

Þ AI = IJ = JC;

c) Ta có: SASCQ = 1 2 SEFGH, HE =  2 5 SASCQ.

Þ Kẻ GK ^ CQ tại K Þ SEFGH= GK.HE=GK. 2 5 SASCQ.

Þ SEFGH 2 5 . 1 2 S A B C D ⇒ S = E F G H 1 5 S A B C D

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
UT
Xem chi tiết
CS
Xem chi tiết
CS
Xem chi tiết
HT
Xem chi tiết
DA
Xem chi tiết
BN
Xem chi tiết
2N
Xem chi tiết
PB
Xem chi tiết