TM

Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo. Gọi M,N theo thứ tự là trung điểm của OB và OD. Gọi E là giao điểm của AM và CD, F là giao điểm của CN và AB

a) Chứng minh tứ giác AMCN là hình bình hành

b) Tứ giác AECF là hình gì? Vì sao?

c) Chứng minh E và F đối xứng nhau qua O

d) Chứng minh EC = 2DE

KK
21 tháng 11 2018 lúc 18:42

O là giao điểm của hai đường chéo AC,BD(gt)
=> AO=OC, OD=OB (vì ABCD là hình bình hành)
Lại có;
E là trung điểm của OD(gt)
=> OE=1/2.OD
F là trung điểm của OB(gt)
=> OF=1/2.OB
Mà OD=OB (cmt)
=> OE=OF
Tứ giác AFCE có: OA=OC(cmt) và OE=OF(cmt)
=> O là giao điểm của hai đường chéo AC,EF cắt nhau tại trung điểm mỗi đoạn
=> AFCE là hình bình hành
=> AE//CF (vì AE, CF là hai cạnh đối nhau)
Có AE//CF (cmt) => EK// CF (vì K thuộc AE)
Từ O vẽ đường thẳng cắt CD tại H sao cho OH//EK//CF
Xét tam giác DOH có: E là trung điểm của OD
EK//OH (theo cách vẽ đường thẳng OH)
=> K là trung điểm của DH
=> DK=KH (1)
Xét hình thang EKCF có: O là trung điểm của EF (theo câu a)
OH//EK//CF (theo cách vẽ đường thẳng OH)
=> H là trung điểm của KC
=> KH=HC (2)
Từ (1) và (2) => DK=KH=HC
Lại có: KC=KH+HC => KC= DK+DK (vì DK=KH=HC)
=> KC=2DK => DK=1/2KC

Bình luận (0)

Các câu hỏi tương tự
TM
Xem chi tiết
TX
Xem chi tiết
JB
Xem chi tiết
KD
Xem chi tiết
LS
Xem chi tiết
TA
Xem chi tiết
DC
Xem chi tiết
ZG
Xem chi tiết
H24
Xem chi tiết