PB

Cho hình bình hành ABCD .Gọi E là trung điểm của AB, F là trung điểm của CD. Chứng minh hai tam giác ADE và CBF đồng dạng với nhau.

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

CT
22 tháng 3 2017 lúc 2:06

Vì ABCD là hình bình hành nên:

AB = CD (1)

Theo giả thiết:

AE = EB = 1/2 AB (2)

DF = FC = 1/2 CD (3)

Từ (1), (2) và (3) suy ra:

EB = DF và BE // DF.

Suy ra tứ giác BEDF là hình bình hành (vì có cặp cạnh đối song song và bằng nhau)

Suy ra: DE // BF

Ta có:  ∠ (AED) = ∠ (ABF ) (đồng vị)

∠ (ABF) =  ∠ (BFC) (so le trong)

Suy ra:  ∠ (AED) =  ∠ ( BFC)

Xét  △ AED'và  △ CFB ta có:

∠ (AED) = ∠ ( BFC) (chứng minh trên)

∠ A =  ∠ C (tính chất hình bình hành)

Vậy: △ AED đồng dạng  △ CFB (g.g)

Bình luận (0)