PB

Cho hình bình hành ABCD. Gọi E là điểm đối xứng với D qua điểm A, gọi F là điểm đối xứng với D qua C. Chứng minh rằng E đối xứng với điểm F qua điểm B.

CT
16 tháng 4 2019 lúc 2:40

Giải bài 52 trang 96 Toán 8 Tập 1 | Giải bài tập Toán 8

Ta có: ABCD là hình bình hành nên AB //= CD, AD//=BC.

+ E đối xứng với D qua A

⇒ AE = AD

Mà BC = AD

⇒ BC = AE.

Lại có BC // AE (vì BC // AD ≡ AE)

⇒ AEBC là hình bình hành

⇒ EB //= AC (1).

+ F đối xứng với D qua C

⇒ CF = CD

Mà AB = CD

⇒ AB = CF

Mà AB // CF (vì AB // CD ≡ CF)

⇒ ABFC là hình bình hành

⇒ AC //= BF (2)

Từ (1) và (2) suy ra E, B, F thẳng hàng và BE = BF

⇒ B là trung điểm EF

⇒ E đối xứng với F qua B

Bình luận (0)

Các câu hỏi tương tự
GP
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
LQ
Xem chi tiết
NT
Xem chi tiết
HP
Xem chi tiết
QN
Xem chi tiết
PB
Xem chi tiết
LN
Xem chi tiết