Lời giải:
Vì $ABCD$ là hình bình hành nên:
$\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}$
$\overrightarrow{BD}=\overrightarrow{BA}+\overrightarrow{AD}=\overrightarrow{AD}-\overrightarrow{AB}$
Do đó:
\(\overrightarrow{AC}.\overrightarrow{BD}=(\overrightarrow{AB}+\overrightarrow{AD})(\overrightarrow{AD}-\overrightarrow{AB})=(\overrightarrow{AD})^2-(\overrightarrow{AB})^2=AD^2-AB^2=1-3=-2\)
Áp dụng định lý cosin:
\(BD^2=AB^2+AD^2-2.AB.AD\cos A=3+1-2.\sqrt{3}.1.\cos 30=1\)
\(\Rightarrow |\overrightarrow{BD}|=1\)
\(AC^2=AD^2+DC^2-2.AD.DC\cos D=AD^2+AB^2-2.AD.AB\cos 150=7\)
\(\Rightarrow |\overrightarrow{AC}|=\sqrt{7}\)
Suy ra: \(\cos (\overrightarrow{AC},\overrightarrow{BD})=\frac{\overrightarrow{AC}.\overrightarrow{BD}}{|\overrightarrow{AC}||\overrightarrow{BD}|}=\frac{-2}{\sqrt{7}}\)
Lời giải:
Vì $ABCD$ là hình bình hành nên:
$\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}$
$\overrightarrow{BD}=\overrightarrow{BA}+\overrightarrow{AD}=\overrightarrow{AD}-\overrightarrow{AB}$
Do đó:
\(\overrightarrow{AC}.\overrightarrow{BD}=(\overrightarrow{AB}+\overrightarrow{AD})(\overrightarrow{AD}-\overrightarrow{AB})=(\overrightarrow{AD})^2-(\overrightarrow{AB})^2=AD^2-AB^2=1-3=-2\)
Áp dụng định lý cosin:
\(BD^2=AB^2+AD^2-2.AB.AD\cos A=3+1-2.\sqrt{3}.1.\cos 30=1\)
\(\Rightarrow |\overrightarrow{BD}|=1\)
\(AC^2=AD^2+DC^2-2.AD.DC\cos D=AD^2+AB^2-2.AD.AB\cos 150=7\)
\(\Rightarrow |\overrightarrow{AC}|=\sqrt{7}\)
Suy ra: \(\cos (\overrightarrow{AC},\overrightarrow{BD})=\frac{\overrightarrow{AC}.\overrightarrow{BD}}{|\overrightarrow{AC}||\overrightarrow{BD}|}=\frac{-2}{\sqrt{7}}\)