PB

 Cho hình 125 trong đó ABCD là hình chữ nhật, E là một điểm bất kì nằm trên đường chéo AC, FG // AD và HK // AB. Chứng minh rằng hai hình chữ nhật EFBK và EGDH có cùng diện tích.

Giải bài 13 trang 119 Toán 8 Tập 1 | Giải bài tập Toán 8

CT
14 tháng 1 2018 lúc 15:42

Ta có: SEHDG = SADC – SAHE – SEGC.

SEFBK = SABC – SAFE – SEKC.

Để chứng minh SEHDG = SEFBK,

ta đi chứng minh SADC = SABC; SAHE = SAFE ; SEGC = SEKC.

+ Chứng minh SADC = SABC.

SADC = AD.DC/2;

SABC = AB.BC/2.

ABCD là hình chữ nhật ⇒ AB = CD, AD = BC

⇒ SADC = SABC.

+ Chứng minh SAHE = SAFE (1)

Ta có: EH // AF và EF // AH

⇒ AHEF là hình bình hành

Mà Â = 90º

⇒ AHEF là hình chữ nhật

⇒ SAHE = SAFE (2)

+ Chứng minh SEGC = SEKC

EK // GC, EG // KC

⇒ EGCK là hình bình hành

Mà D̂ = 90º

⇒ EGCK là hình chữ nhật

⇒ SEGC = SEKC (3).

Từ (1); (2); (3) suy ra đpcm.

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
PB
Xem chi tiết
DD
Xem chi tiết
CM
Xem chi tiết
TH
Xem chi tiết
PM
Xem chi tiết
CH
Xem chi tiết
NA
Xem chi tiết
MD
Xem chi tiết