PP

cho hệ pt (m-1)x+2y=m+1 và x-y=2 tìm m để hệ pt có nghiệm duy nhât (x;y) thoả mãn xy>0

LP
2 tháng 7 2023 lúc 20:24

\(x-y=2\Rightarrow y=x-2\). Thay vào pt đầu tiên, ta có:

\(\left(m-1\right)x+2\left(x-2\right)=m+1\) 

\(\Leftrightarrow\left(m+1\right)x=m+5\)

 Ta thấy \(m\) không thể bằng -1 được vì khi đó \(m+5=0\Leftrightarrow m=-5\), trong khi \(m\) không thể mang 2 giá trị cùng một lúc. Vì vậy, \(m\ne-1\).  \(\Rightarrow x=\dfrac{m+5}{m+1}\)

\(\Rightarrow y=x-2=\dfrac{m+5}{m+1}-2\) \(=\dfrac{3-m}{m+1}\).

Từ đó, ta có \(xy=\dfrac{\left(m+5\right)\left(3-m\right)}{\left(m+1\right)^2}\).

Rõ ràng \(\left(m+1\right)^2>0\) nên để \(xy>0\) thì \(\left(m+5\right)\left(3-m\right)>0\) \(\Leftrightarrow-5< m< 3\)

Bình luận (0)
LP
2 tháng 7 2023 lúc 20:25

Kết luận: Để hpt đã cho có nghiệm duy nhất \(x,y\) thỏa mãn ycbt thì\(-5< m< 3\) và \(m\ne-1\)

Bình luận (0)

Các câu hỏi tương tự
PH
Xem chi tiết
ML
Xem chi tiết
TH
Xem chi tiết
H24
Xem chi tiết
NC
Xem chi tiết
HN
Xem chi tiết
PN
Xem chi tiết
NP
Xem chi tiết
NP
Xem chi tiết