Ta có: \(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\y=3x-2m+1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=m+1\end{matrix}\right.\)
Mặt khác: \(x^2+y^2=2m^2+2m+1=2\left(m^2+m+\dfrac{1}{2}\right)\)
\(=2\left(m^2+2\cdot m\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4}\right)=2\left(m+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)
Dấu bằng xảy ra \(\Leftrightarrow m+\dfrac{1}{2}=0\Leftrightarrow m=-\dfrac{1}{2}\)
Vậy ...
Đúng 3
Bình luận (0)