1. Giải hệ phương trình \(\left\{{}\begin{matrix}3x^2+y^2+4xy=8\\\left(x+y\right)\left(x^2+xy+2\right)=8\end{matrix}\right.\)
2. chứng minh rằng với moi số nguyên n ta luôn có \(\left[\left(27n+5\right)^7+10\right]^7+\left[\left(10n+27\right)^7+5\right]^7+\left[\left(5n+10\right)^7+27\right]^7⋮42\)
1.Cho hệ phương trình:
\(\left\{{}\begin{matrix}x+y+xy=2m+1\\xy\left(x+y\right)=m^2+m\end{matrix}\right.\)
CMR: hpt luôn có nghiệm mọi x
Xác định m để hpt có no duy nhất
2. Tìm liên hệ của a;b để hệ sau có nghiệm
a)\(\left\{{}\begin{matrix}x^2+y^2=2\\xy=b\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}x^2-y^2=a\\2xy=b\end{matrix}\right.\)
3.Cho hpt \(\left\{{}\begin{matrix}x^2+y^2=a^2-2\\x+y=2a-3\end{matrix}\right.\)
Gọi (x;y) là no của hệ, xác định a để xy đạt gtnn
Tìm các số nguyên dương x, y để A, B đồng thời là các số chính phương với
\(\left\{{}\begin{matrix}A=x^2+y+1\\B=y^2+x+4\end{matrix}\right.\)
Cho hệ phương trình : \(\left\{{}\begin{matrix}\left|x\right|+x+\left|y\right|+y=2016\\\left|x\right|-x+\left|y\right|-y=k\end{matrix}\right.\)
vs k là 1 số cho trước. Biết rằng hệ phương trình có đúng 2 nghiệm phân biệt (x;y) = (a;b) và (x;y) = (c;d)
Tính tổng a + b + c + d
giải hệ phương trình \(\left\{{}\begin{matrix}\left(x^2+1\right)\left(y^2+1\right)=10\\\left(x+y\right)\left(xy-1\right)=3\end{matrix}\right.\)
b, cho x,y là các số dương thỏa mãn x+y=1 . tìm GTNN của biểu thức A = \(\dfrac{1}{x}+\dfrac{4}{y}\)
giả hệ phương trình \(\left\{{}\begin{matrix}p-1=2x\left(x+2\right)\\p^2-1=2y\left(y+2\right)\end{matrix}\right.\) với p là số nguyên tố và x,y là số nguyên dương
Bài 1: a Tìm các giá trị nguyên dương (x;y) của pt \(x^2+x+13=y^2\) b cho 3 số nguyên dương a,b,c thảo mãn a>1 và \(2^a=b^c+1\) chứng minh c=1
Bài 2 : a giai pt sau \(\sqrt{2x^2+16x+18}+\sqrt{x^2-1}=2x+4\) b giải hệ pt sau : \(\left\{{}\begin{matrix}x^2-y\left(x+y\right)+1=0\\\left(x^2+1\right)\left(x+y-2\right)+y=0\end{matrix}\right.\)
Bài 3 : cho 3 số thực dương a,b,c thỏa mãn a+b+c =3 CMR \(\frac{a}{ab+3c}+\frac{b}{bc+3a}+\frac{c}{ca+3b}\ge\frac{3}{4}\)
Cho a, b, c, x, y, z là các số nguyên dương thoả mãn \(\left\{{}\begin{matrix}x=\sqrt{a+yz}\\y=\sqrt{b+xz}\\z=\sqrt{c+xy}\end{matrix}\right.\) . Cmr: \(\left(ax+by+cz\right)^2\) chia hết cho (a+b+c)(x+y+z)
GIẢI HỆ PHƯƠNG TRÌNH ( Nâng cao )
\(1,\left\{{}\begin{matrix}x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=5\\\left(xy-1\right)^2=x^2-y^2+2\end{matrix}\right.\)
\(2,\left\{{}\begin{matrix}\left(2-\frac{1}{2x+y}\right)\sqrt{y}=2\\\left(2+\frac{1}{2x+y}\right)\sqrt{x}=2\end{matrix}\right.\)