Ôn tập hệ hai phương trình bậc nhất hai ẩn

NP

Cho hệ phương trình :

\(\left\{{}\begin{matrix}3x\left(m-1\right)y=12\\\left(m-1\right)x+12y=24\end{matrix}\right.\)

a/ Tìm m để hệ có nghiệm duy nhất thỏa mãn x +y =-1

b/ Tìm m nguyên để hệ có nghiệm duy nhất là nghiệm nguyên .

HELP ME !!!!!!!!

AH
2 tháng 2 2020 lúc 20:04

Lời giải:

a)

Để PT có nghiệm $x+y=-1\Rightarrow x=-1-y$. Thay vào HPT:

\(\left\{\begin{matrix} 3(-1-y)+(m-1)y=12\\ (m-1)(-1-y)+12y=24\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y(m-4)=15\\ y(13-m)=m+23\end{matrix}\right.\)

Để HPT có nghiệm duy nhất thì:

\(\left\{\begin{matrix} m-4\neq 0\\ 13-m\neq 0\\ \frac{15}{m-4}=\frac{m+23}{13-m}\end{matrix}\right.\Rightarrow \frac{15}{m-4}=\frac{m+23}{13-m}\)

\(\Rightarrow \left[\begin{matrix} m=-41\\ m=7\end{matrix}\right.\)

b)

HPT tương đương với:

\(\left\{\begin{matrix} 3x=12-(m-1)y\\ 3(m-1)x+36y=72\end{matrix}\right.\Rightarrow (m-1)[12-(m-1)y]+36y=72\)

\(\Leftrightarrow y(m-7)(m+5)=12(m-7)(*)\)

Để hệ đã cho có nghiệm duy nhất thì $(*)$ phải có nghiệm $y$ duy nhất.

$\Rightarrow (m-7)(m+5)\neq 0\Leftrightarrow m\neq 7; m\neq -5$

Khi đó: $y=\frac{12}{m+5}$. Để $y$ nguyên thì $\frac{12}{m+5}$ nguyên

$\Rightarrow m+5\in\left\{\pm 1; \pm 2; \pm 3; \pm 4; \pm 6; \pm 12\right\}$

$\Rightarrow m\in\left\{-4;-6; -3; -7; -2; -8; -1; -9; 1; -11; 7;-17\right\}$

Mà $m\neq 7; m\neq -5$ nên

$\Rightarrow m\in\left\{-4;-6; -3; -7; -2; -8; -1; -9; 1; -11;-17\right\}$

Thử lại thấy đều thỏa mãn.

Vậy.....

Bình luận (0)
 Khách vãng lai đã xóa
AH
13 tháng 2 2020 lúc 23:16

Xem lời giải tại đây:

Câu hỏi của hoàng thiên - Toán lớp 9 | Học trực tuyến

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
HT
Xem chi tiết
TT
Xem chi tiết
IH
Xem chi tiết
MH
Xem chi tiết
MN
Xem chi tiết
TP
Xem chi tiết
AP
Xem chi tiết
NA
Xem chi tiết
LM
Xem chi tiết