Ôn tập hệ hai phương trình bậc nhất hai ẩn

NP

Cho hệ phương trình :

(I) \(\left\{{}\begin{matrix}mx+y=7\\2x-y=4\end{matrix}\right.\)

Gọi ( x :y ) là nghiệm của hệ phương trình . Xác định giá trị của m để P = x2 + y2 đạt giá trị nhỏ nhất . Tính giá trị nhỏ nhất đó .

HELP ME !!!!!

MP
5 tháng 2 2018 lúc 17:52

ta có : \(\left\{{}\begin{matrix}mx+y=7\\2x-y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=7-mx\\2x-7+mx=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=7-mx\\x=\dfrac{11-mx}{2}\end{matrix}\right.\)

\(\Rightarrow P=x^2+y^2=\dfrac{\left(11-mx\right)^2}{4}+\left(7-mx\right)^2\)

\(=\dfrac{121-22mx+m^2x^2}{4}+49-14mx+m^2x^2\)

\(=\dfrac{5m^2x^2-78mx+317}{4}\)

\(=\dfrac{5m^2x^2-2.\sqrt{5}mx+\dfrac{78}{2\sqrt{5}}+\dfrac{1521}{5}+\dfrac{64}{5}}{4}\)

\(=\dfrac{\left(\sqrt{5}mx-\dfrac{78}{2\sqrt{5}}\right)^2+\dfrac{64}{5}}{4}\)

ta có : \(P\) nhỏ nhất khi \(\dfrac{\left(\sqrt{5}mx-\dfrac{78}{2\sqrt{5}}\right)^2+\dfrac{64}{5}}{4}\) nhỏ nhất

\(\Leftrightarrow\left(\sqrt{5}mx-\dfrac{78}{2\sqrt{5}}\right)^2+\dfrac{64}{5}\) nhỏ nhất

ta có : \(\left(\sqrt{5}mx-\dfrac{78}{2\sqrt{5}}\right)^2+\dfrac{64}{5}\ge\dfrac{64}{5}\forall mx\)

khi \(\sqrt{5}mx-\dfrac{78}{2\sqrt{5}}=0\Leftrightarrow m=\dfrac{39}{5x}\)

khi đó ta có : \(P=\dfrac{\dfrac{64}{5}}{4}=\dfrac{16}{5}\)

vậy .............................................................................................

Bình luận (0)

Các câu hỏi tương tự
TP
Xem chi tiết
HT
Xem chi tiết
HC
Xem chi tiết
NA
Xem chi tiết
TH
Xem chi tiết
JP
Xem chi tiết
HN
Xem chi tiết
DD
Xem chi tiết