Cho hệ phương trình \(\hept{\begin{cases}mx+y=m^2+m+1\\-x+my=m^2\end{cases}}\)m là tham số
Xác định m sao cho hệ có nghiệm (x,y) thảo mãn x2+y2 đạt giá trị nhỏ nhất
Xác định giá trị âm của m để hệ phương trình:
\(\hept{\begin{cases}x^2y+m=y^3+xy\\xy^2+m^3=x^3+yx\end{cases}}\)có nghiệm duy nhất
Tìm điều kiện của số nguyên m để hệ phương trình
\(\hept{\begin{cases}mx-y=a\\x+\left(m+1\right)y=b\end{cases}}\)
có nghiệm duy nhất (x;y) (x,y là các số nguyên)
với mọi giá trị nguyên của a,b
Tìm tất cả các giá trị của tham số m để hệ phương trình sau có nghiệm (x;y) thoả mãn |x| \(\le\)1
\(\hept{\begin{cases}2x-y+1=0\\x^2-3xy+y^2=2x+m^2-4\end{cases}}\)
Gọi (x;y) là nghiệm của hệ phương trình \(\hept{\begin{cases}x-my=2-4m\\mx+y=3m+1\end{cases}}\). Tìm giá trị lớn nhất của biểu thức \(L=x^2+y^2-2x\)khi m thay đổi
có bao nhiêu giá trị nguyên của tham số m (biết \(m\ge-2019\)
để hệ phương trình sau có nghiệm thực
\(\hept{\begin{cases}x^2+x-\sqrt[3]{y}=1-2m\\2x^3-x^2\sqrt[3]{y}-2x^2+x\sqrt[3]{y}=m\end{cases}}\)
Cho hệ bất phương trình \(\hept{\begin{cases}x^2-3x-4\le0\\x^3-3|x|x-m^2+6m\ge0\end{cases}}\). Để hệ có nghiệm, các giá trị thích hợp của tham số m là:
Biết hai hệ phương trình
\(\hept{\begin{cases}x+3y-1=0\\2x+3y-z=1\\\left(m+1\right)x+2z=2m-1\end{cases}}\) và \(\hept{\begin{cases}2x+y-z=1\\x-y-z=0\\x+ny-2nz=3\end{cases}}\)
có nghiệm chung. Tính giá trị m + n
Biết hai hệ phương trình
\(\hept{\begin{cases}x+3y-1=0\\2x+3y-z=1\\\left(m+1\right)x+2z=2m-1\end{cases}}\) và \(\hept{\begin{cases}2x+y-z=1\\x-y-z=0\\x+ny-2nz=3\end{cases}}\)
có nghiệm chung. Tính giá trị m + n