H24

cho hệ \(\hept{\begin{cases}ax+2y=a+1\\2x+ay=2a-1\end{cases}}\)

Khi hệ có vô số nghiệm (x;y) Cm

\(x^2-6xy\ge\frac{-567}{196}\)

MT
31 tháng 5 2019 lúc 19:33

a, Khi m=2, hệ pt có dạng

{x+2y=22x−2y=1⇔{3x=32x−2y=1{x+2y=22x−2y=1⇔{3x=32x−2y=1

⇔{x=12×1−2y=1⇔⎧⎩⎨x=1y=12⇔{x=12×1−2y=1⇔{x=1y=12

Vậy hệ pt có nghiệm (1;1/2)

b, {x+my=2mx−2y=1⇔{x=2−mym(2−my)−2y=1{x+my=2mx−2y=1⇔{x=2−mym(2−my)−2y=1

⇔{x=2−my2m−m2y−2y−1=0⇔{x=2−my2m−m2y−2y−1=0

⇔{x=2−my(−m2−2)y+2m−1=0(⋅)⇔{x=2−my(−m2−2)y+2m−1=0(⋅)

Hệ pt có nghiệm duy nhất khi pt (.) có nghiệm duy nhất

⇔−m2−2≠0⇔−m2≠2⇔m2≠−2⇔−m2−2≠0⇔−m2≠2⇔m2≠−2(luôn đúng)

∀m∀m ( 1 ) , hê pt có dạng

{x=2−my(−m2−2)y=1−2m{x=2−my(−m2−2)y=1−2m⇔⎧⎩⎨x=2−myy=1−2m−m2−2⇔{x=2−myy=1−2m−m2−2

⇔⎧⎩⎨⎪⎪⎪⎪⎪⎪x=2−m(1−2m)−m2−2y=1−2m−m2−2⇔{x=2−m(1−2m)−m2−2y=1−2m−m2−2⇔⎧⎩⎨⎪⎪⎪⎪⎪⎪x=−2m2−4−m+2m2−m2−2y=1−2m−m2−2⇔{x=−2m2−4−m+2m2−m2−2y=1−2m−m2−2

⇔⎧⎩⎨⎪⎪⎪⎪x=m+4m2+2y=2m−1m2+2⇔{x=m+4m2+2y=2m−1m2+2

Để x>0 thì m+4m2+2>0m+4m2+2>0 mà m2+2 > 0 ( luôn đúng) ⇒m+4>0⇔m>−4(2)⇒m+4>0⇔m>−4(2)

Để y<0 thì 2m−1m2+2<02m−1m2+2<0 mà m2+2 > 0 ( luôn đúng )

⇒2m−1<0⇔m<12(3)⇒2m−1<0⇔m<12(3)

Từ (1),(2),(3) ⇒∀m⇒∀m thỏa mãn −4<m<12−4<m<12 thì hệ pt đã cho có nghiệm duy nhất (x;y) sao cho x>0 , y< 0

Bình luận (0)
TK
31 tháng 5 2019 lúc 21:55

Hệ có vô số nghiệm 

Xét \(a=0\)=> hệ có nghiệm \(\left(-\frac{1}{2},\frac{1}{2}\right)\)loại

\(a=\frac{1}{2}\)hệ có nghiệm \(\left(-\frac{1}{5},\frac{4}{5}\right)\)loại

Xét \(a\ne0,a\ne\frac{1}{2}\)

Hệ có vô số nghiệm 

=> \(\frac{a}{2}=\frac{2}{a}=\frac{a+1}{2a-1}\)

=> a=2

Khi a=2

=> hệ có vô số nghiệm với\(2x+2y=3\)

=> \(x^2-3x\left(3-2x\right)+\frac{567}{196}\ge0\)

<=>\(7x^2-9x+\frac{567}{196}\ge0\)

<=> \(\left(\sqrt{7}x-\frac{9\sqrt{7}}{14}\right)^2\ge0\)luôn đúng

=> ĐPCM

Bình luận (0)

Các câu hỏi tương tự
PT
Xem chi tiết
HM
Xem chi tiết
MN
Xem chi tiết
TT
Xem chi tiết
WB
Xem chi tiết
H24
Xem chi tiết
PH
Xem chi tiết
H24
Xem chi tiết
MD
Xem chi tiết