a, Khi m=2, hệ pt có dạng
{x+2y=22x−2y=1⇔{3x=32x−2y=1{x+2y=22x−2y=1⇔{3x=32x−2y=1
⇔{x=12×1−2y=1⇔⎧⎩⎨x=1y=12⇔{x=12×1−2y=1⇔{x=1y=12
Vậy hệ pt có nghiệm (1;1/2)
b, {x+my=2mx−2y=1⇔{x=2−mym(2−my)−2y=1{x+my=2mx−2y=1⇔{x=2−mym(2−my)−2y=1
⇔{x=2−my2m−m2y−2y−1=0⇔{x=2−my2m−m2y−2y−1=0
⇔{x=2−my(−m2−2)y+2m−1=0(⋅)⇔{x=2−my(−m2−2)y+2m−1=0(⋅)
Hệ pt có nghiệm duy nhất khi pt (.) có nghiệm duy nhất
⇔−m2−2≠0⇔−m2≠2⇔m2≠−2⇔−m2−2≠0⇔−m2≠2⇔m2≠−2(luôn đúng)
∀m∀m ( 1 ) , hê pt có dạng
{x=2−my(−m2−2)y=1−2m{x=2−my(−m2−2)y=1−2m⇔⎧⎩⎨x=2−myy=1−2m−m2−2⇔{x=2−myy=1−2m−m2−2
⇔⎧⎩⎨⎪⎪⎪⎪⎪⎪x=2−m(1−2m)−m2−2y=1−2m−m2−2⇔{x=2−m(1−2m)−m2−2y=1−2m−m2−2⇔⎧⎩⎨⎪⎪⎪⎪⎪⎪x=−2m2−4−m+2m2−m2−2y=1−2m−m2−2⇔{x=−2m2−4−m+2m2−m2−2y=1−2m−m2−2
⇔⎧⎩⎨⎪⎪⎪⎪x=m+4m2+2y=2m−1m2+2⇔{x=m+4m2+2y=2m−1m2+2
Để x>0 thì m+4m2+2>0m+4m2+2>0 mà m2+2 > 0 ( luôn đúng) ⇒m+4>0⇔m>−4(2)⇒m+4>0⇔m>−4(2)
Để y<0 thì 2m−1m2+2<02m−1m2+2<0 mà m2+2 > 0 ( luôn đúng )
⇒2m−1<0⇔m<12(3)⇒2m−1<0⇔m<12(3)
Từ (1),(2),(3) ⇒∀m⇒∀m thỏa mãn −4<m<12−4<m<12 thì hệ pt đã cho có nghiệm duy nhất (x;y) sao cho x>0 , y< 0
Hệ có vô số nghiệm
Xét \(a=0\)=> hệ có nghiệm \(\left(-\frac{1}{2},\frac{1}{2}\right)\)loại
\(a=\frac{1}{2}\)hệ có nghiệm \(\left(-\frac{1}{5},\frac{4}{5}\right)\)loại
Xét \(a\ne0,a\ne\frac{1}{2}\)
Hệ có vô số nghiệm
=> \(\frac{a}{2}=\frac{2}{a}=\frac{a+1}{2a-1}\)
=> a=2
Khi a=2
=> hệ có vô số nghiệm với\(2x+2y=3\)
=> \(x^2-3x\left(3-2x\right)+\frac{567}{196}\ge0\)
<=>\(7x^2-9x+\frac{567}{196}\ge0\)
<=> \(\left(\sqrt{7}x-\frac{9\sqrt{7}}{14}\right)^2\ge0\)luôn đúng
=> ĐPCM