Bài 3. TÍCH CỦA VECTO VỚI MỘT SỐ

BN

Cho HBH ABCD. Gọi M N lần lượt là các điểm trên cạnh AD, BC thoả mãn AM=\(\frac{2}{3}\)AD, BN=\(\frac{1}{4}\)BC. Gọi G là trọng tâm tam giác CMN. Phân tích AG theo AB và CD

HH
20 tháng 11 2019 lúc 17:41

\(\overrightarrow{AM}=\frac{2}{3}\overrightarrow{AD};\overrightarrow{BN}=\frac{1}{4}\overrightarrow{BC}\)

Có G là trọng tâm tam giác CMN=> \(\overrightarrow{GC}+\overrightarrow{GM}+\overrightarrow{GN}=\overrightarrow{0}\)

\(\Rightarrow\overrightarrow{GA}+\overrightarrow{AC}+\overrightarrow{GA}+\overrightarrow{AM}+\overrightarrow{GA}+\overrightarrow{AN}=\overrightarrow{0}\)

\(\Leftrightarrow3\overrightarrow{GA}+\overrightarrow{AC}+\frac{2}{3}\overrightarrow{AD}+\overrightarrow{AN}=\overrightarrow{0}\)

\(\overrightarrow{BN}=\frac{1}{4}\overrightarrow{BC}\Rightarrow\overrightarrow{BA}+\overrightarrow{AN}=\frac{1}{4}\overrightarrow{BA}+\frac{1}{4}\overrightarrow{BC}\)

\(\Leftrightarrow\overrightarrow{AN}=\frac{3}{4}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{BC}\)

\(\Rightarrow3\overrightarrow{GA}+\overrightarrow{AB}+\overrightarrow{AD}+\frac{2}{3}\overrightarrow{AD}+\frac{3}{4}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{BC}=\overrightarrow{0}\)

\(\Leftrightarrow3\overrightarrow{AG}=\frac{7}{4}\overrightarrow{AB}+\frac{5}{3}\overrightarrow{AD}+\frac{1}{4}\overrightarrow{BC}\)

\(\overrightarrow{AD}=\overrightarrow{BC}\Rightarrow3\overrightarrow{AG}=\frac{7}{4}\overrightarrow{AB}+\frac{23}{12}\overrightarrow{BC}\Leftrightarrow\overrightarrow{AG}=\frac{7}{12}\overrightarrow{AB}+\frac{23}{36}\overrightarrow{BC}\)

P/s: Có thể bạn vt nhầm đề bài bởi tính theo AB và CD thì AB và CD là 2 cạnh đối của hbh nên chúng chả khác bt nhau, chỉ có vecto ngc dấu thôi

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
PM
Xem chi tiết
TN
Xem chi tiết
NN
Xem chi tiết
NM
Xem chi tiết
TC
Xem chi tiết
KS
Xem chi tiết
NN
Xem chi tiết
TN
Xem chi tiết
CC
Xem chi tiết