Violympic toán 9

VH

Cho hàm số \(y=x^2\) có đồ thị (P) và đường thẳng (d) đi qua điểm \(M\left(1;2\right)\)có hệ số góc \(k\ne0\)

a) Chứng minh rằng với mọi giá trị \(k\ne0\), đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt A và B

b) Gọi \(x_A\)\(x_B\) là hoành độ của hai điểm A và B. Chứng minh rằng \(x_A+x_B-x_A.x_B-2=0\)

AH
23 tháng 5 2018 lúc 17:28

Lời giải:

Gọi pt đường thẳng (d) là \(y=kx+b\)

Vì $(d)$ đi qua điểm (1,2) nên \(2=k+b\Rightarrow b=2-k\)

Phương trình đường thẳng (d) được viết lại là: \(y=kx+2-k\)

a) PT hoành độ giao điểm giữa (d) và (P) là:

\(x^2-(kx+2-k)=0(*)\)

\(\Leftrightarrow x^2-kx+(k-2)=0\)

Ta thấy \(\Delta=k^2-4(k-2)=(k-2)^2+4\geq 4>0\) với mọi $k\neq 0$

Suy ra $(*)$ luôn có hai nghiệm phân biệt.

Do đó đường thằng $(d)$ luôn cắt $(P)$ tại hai điểm phân biệt.

b)

Nếu $x_A,x_B$ là hai hoành độ giao điểm thì nó chính là nghiệm của $(*)$

Áp dụng định lý Viete ta có: \(\left\{\begin{matrix} x_A+x_B=k\\ x_Ax_B=k-2\end{matrix}\right.\)

\(\Rightarrow x_A+x_B-x_Ax_B-2=k-(k-2)-2=0\)

Ta có đpcm.

Bình luận (2)

Các câu hỏi tương tự
HB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
NB
Xem chi tiết
BB
Xem chi tiết
NT
Xem chi tiết
BB
Xem chi tiết
NN
Xem chi tiết