Violympic toán 9

BB

Trong mặt phẳng tọa độ Oxy, cho parabol: \(\left(P\right):y=x^2\) và đường thẳng (d): y=\(3x+m^2-1\). Chứng minh rằng với mọi m, (d) luôn cắt (P) tại 2 điểm phân biệt có hoành độ lần lượt là x1,x2. Tìm m để \(\left|x_1\right|+2.\left|x_2\right|=3\)

NT
16 tháng 5 2022 lúc 21:40

Phương trình hoành độ giao điểm là:

\(x^2-3x-m^2+1=0\)

\(a=1;b=-3;c=-m^2+1\)

\(\text{Δ}=9-4\cdot1\cdot\left(-m^2+1\right)\)

\(=9+4m^2-4=4m^2+5>0\)

Do đó: (P) luôn cắt (d) tại hai điểm phân biệt

Bình luận (1)

Các câu hỏi tương tự
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
KT
Xem chi tiết
BB
Xem chi tiết
NH
Xem chi tiết
MK
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết