Bài 1: Sự đồng biến và nghịch biến của hàm số

NH

Cho hàm số \(y=\sqrt{\left(2m-1\right)\sin x-\left(m+2\right)\cos x+4m-3}\). Có tất cả bao nhiêu giá trị nguyên dương nhỏ hơn 2019 của tham số m để hàm số trên xác định với mọi x∈ R.

NL
20 tháng 2 2020 lúc 14:10

Đặt hàm trong căn là \(f\left(x\right)\)

Áp dụng BĐT Bunhiacopxki:

\(\left[\left(2m-1\right)sinx-\left(m+2\right)cosx\right]^2\le\left(2m-1\right)^2+\left(m+2\right)^2=5\left(m^2+1\right)\)

\(\Rightarrow\left(2m-1\right)sinx-\left(m+2\right)cosx\ge-\sqrt{5\left(m^2+1\right)}\)

\(\Rightarrow f\left(x\right)\ge-\sqrt{5\left(m^2+1\right)}+4m-3=f\left(m\right)\)

Để hàm số xác định với mọi x thì \(f\left(x\right)\ge0\) \(\forall x\)

Điều này xảy ra khi \(f\left(m\right)\ge0\)

\(\Rightarrow-\sqrt{5\left(m^2+1\right)}+4m-3\ge0\)

\(\Leftrightarrow4m-3\ge\sqrt{5\left(m^2+1\right)}\) (với \(m\ge\frac{3}{4}\))

\(\Leftrightarrow11m^2-24m+4\ge0\) \(\Rightarrow m\ge2\)

Vậy có 2017 giá trị nguyên của m thỏa mãn

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TC
Xem chi tiết
NC
Xem chi tiết
NC
Xem chi tiết
TL
Xem chi tiết
TC
Xem chi tiết
TC
Xem chi tiết
NT
Xem chi tiết
NC
Xem chi tiết
NC
Xem chi tiết