Cho hàm số \(y=\left(m-1\right)x^2-2mx+m+2\).3 Tìm m để hàm số nghịch biến trên khoảng \(\left(-\infty;2\right)\)
I. HÀM SỐ, TXĐ, CHẴN LẺ, ĐƠN ĐIỆU, ĐỒ THỊ.
1. TXĐ CỦA HÀM SỐ
Câu 1.Tìm tập xác định của hàm số y=\(\dfrac{\sqrt{x-1}}{x-3}\)
Câu 2.Tìm tập xác định của hàm số y= \(\sqrt[3]{x-1}\)
Câu 3. Tìm tập xác định của hàm số y=\(\dfrac{\sqrt[3]{1-x}+3}{\sqrt{x+3}}\)
Câu 4. Tìm tập xác định của hàm số y=\(\sqrt{\left|x-2\right|}\)
\(y=f\left(x\right)=4x^2-4mx+m^2-2m\)Cho hàm số
Tìm tất cả giá trị của tham số m để giá trị nhỏ nhất của hàm số trên [-2;0] bằng 3
Tìm m để hàm số y = - x2 + 2mx + 1 đồng biến trên khoảng \(\left(-\infty;3\right)\)
tìm TXĐ của hàm số:
a) y=\(\dfrac{\sqrt{x^2-x+1}}{x-3}\)
b)y=\(\dfrac{\sqrt{5-2x}}{\left(x-2\right)\sqrt{x-1}}\)
tìm m để hàm số sau đây xác định với mọi x thuộc khoảng\(\left(0;+\infty\right)\): \(y=\sqrt{2x-3m+4}+\frac{x-m}{m+x+1}\)
Cho hàm số y = |\(x^2+4x+2m-1\) | với \(\forall x\in\left[-1;3\right]\) . Tìm m để min của y = 5
Tìm m để các hàm số sau đây xác định với mọi x thuộc khoảng\(\left(0;+\infty\right)\).
\(y=\sqrt{2x-3m+4}+\frac{x-m}{x=m-1}\)
Tìm tất cả giá trị của tham số m để hàm số y = -x2 + 2mx + 1 đồng biến trên \(\left(-\infty;3\right)\)(dùng kiến thức lớp 10 để giải ạ)