TB

cho hàm số y=(m-2)x+3

a) Tìm m để đồ thị hàm số song song với đường thẳng y=x

b) Vẽ đồ thị với m tìm được ở câu a. Tìm tọa độ giao điểm của đồ thị vừa vẽ với đường thẳng y=2x+1

c) Tìm điểm cố định mà đồ thị hàm số luôn đi qua với mọi giá trị của m

d) Tìm m để khoảng cách từ O đến đường thẳng (d) bằng 1

AN
20 tháng 11 2016 lúc 15:12

a/ Hai hàm số có đồ thị // với nhau khi

\(\hept{\begin{cases}m-2=1\\3\ne0\end{cases}}\Leftrightarrow m=3\)

b/ Tọa độ giao điểm 2 đường thẳng là nghiệm của hệ

\(\hept{\begin{cases}y=x+3\\y=2x+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=5\end{cases}}\)

c/ Gọi điểm mà đường thẳng luôn đi qua là M(a,b) ta thế vào hàm số được

\(b=ma+3\)

\(\Leftrightarrow ma+3-b=0\)

Để phương trình này không phụ thuôc m thì

\(\hept{\begin{cases}a=0\\3-b=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=3\end{cases}}\)

Tọa độ điểm cần tìm là M(0, 3)

Bình luận (0)
AN
20 tháng 11 2016 lúc 15:20

d/ Ta có khoản cách từ O(0,0) tới (d) là 1

\(\Rightarrow=\frac{\left|0-0m-3\right|}{\sqrt{1^2+m^2}}=\frac{3}{\sqrt{1+m^2}}=1\)

\(\Leftrightarrow\sqrt{1+m^2}=3\)

\(\Leftrightarrow m^2=8\)

\(\Leftrightarrow\orbr{\begin{cases}m=2\sqrt{2}\\m=-2\sqrt{2}\end{cases}}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
PA
Xem chi tiết
H24
Xem chi tiết
PV
Xem chi tiết
HN
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết