Cho hàm số y = f(x) xác định trên ℝ và có đồ thị của hàm số f ' ( x ) , biết f ( 3 ) + f ( 2 ) = f ( 0 ) + f ( 1 ) và các khẳng định sau:
Hàm số y = f(x) có 2 điểm cực trị.
Hàm số y = f(x) đồng biến trên khoảng ( - ∞ ; 0 ) .
Max [ 0 ; 3 ] f ( x ) = f ( 3 ) .
Min ℝ f ( x ) = f ( 2 ) .
Max [ - ∞ ; 2 ] f ( x ) = f ( 0 ) .
Số khẳng định đúng là
A. 2.
B. 3.
C. 4.
C. 4.
Cho hàm số y=f(x) xác định trên ℝ và có đồ thị của hàm số f'(x), biết f(3)+f(20=f(0)+f(1) và các khẳng định sau:
1) Hàm số y=f(x) có 2 điểm cực trị
2) Hàm số y=f(x) đồng biến trên khoảng - ∞ ; 0
3) M a x 0 ; 3 f x = f 3
4) M a x ℝ f x = f 2
5) M a x - ∞ ; 2 f x = f 0 .
Số khẳng định đúng là
A. 2
B. 3
C. 4
D. 5
Cho hàm số y = f(x) xác định trên khoảng (-2;-1) và có lim x → 2 - f ( x ) = 2 , lim x → 1 - f ( x ) = - ∞ . Hỏi khẳng định nào dưới đây là khẳng định đúng?
A. Đồ thị hàm số f(x) có đúng một tiệm cận ngang là đường thẳng y = 2
B. Đồ thị hàm số f(x) có đúng hai tiệm cận ngang là các đường thẳng y = 2 và y = -1
C. Đồ thị hàm số f(x) có đúng một tiệm cận đứng là đường thẳng x = -1
D. Đồ thị hàm số f(x) có đúng hai tiệm cận đứng là các đường thẳng x = -2 và x = -1
Cho hàm số y = f(x) có đồ thị (C) xác định trên khoảng (-2;-1) và có lim x → ( − 2 ) + f ( x ) = 2 , lim x → ( − 1 ) − f ( x ) = − ∞ . Khẳng định nào dưới đây đúng?
A. Đồ thị (C) có đúng hai tiệm cận ngang là đường thẳng y = 2 và y = –1
B. Đồ thị (C) có đúng một tiệm cận đứng là đường thẳng x = –1
C. Đồ thị (C) có đúng một tiệm cận ngang là đường thẳng y = 2
D. Đồ thị (C) có đúng hai tiệm cận đứng là đường thẳng x = –2 và x = –1
Cho hàm số f ( x ) = 1 3 + 2 x + 1 3 + 2 - x . Trong các khẳng định sau, có bao nhiêu khẳng định đúng?
1 ) f ' ( x ) # 0 , ∀ x ∈ R
2 ) f ( 1 ) + f ( 2 ) + . . . + f ( 2017 ) = 2017
3 ) f ( x 2 ) = 1 3 + 4 x + 1 3 + 4 - x
A. 0
B. 3
C. 2
D. 1
Cho hàm số y=f(x) liên tục trên R và có đạo hàm f ’ ( x ) = ( x + 2 ) ( x - 1 ) 2018 ( x - 2 ) 2019 . Khẳng định nào sau đây là đúng?
A. Hàm số có ba điểm cực trị
B. Hàm số nghịch biến trên khoảng (-2;2)
C. Hàm số đạt cực đại tại điểm x = 1 và đạt cực tiểu tại các điểm x = ± 2
D. Hàm số đồng biến trên mỗi khoảng (1;2) và (2;+∞)
Cho hàm số f(x) liên tục trên R và f(x) ≠ 0 với mọi x ∈ R . f '(x) = (2x+1)f2(x) và f(1) = –0,5. Biết rằng tổng f(1) + f(2) + f(3) + ... + f(2017) = a b ; (a ∈ Z, b ∈ N) với a b tối giản. Mệnh đề nào dưới đây đúng?
A. a ∈ - 2017 ; 2017
B. b - a = 4035
C. a + b = - 1
D. a b < - 1
Cho hàm số f ( x ) liên tục trên ℝ và f ( x ) ≠ 0 với mọi x ∈ ℝ thỏa mãn f ' ( x ) = ( 2 x + 1 ) . f 2 ( x ) v à f ( 1 ) = - 0 , 5 . Biết tổng f ( 1 ) + f ( 2 ) + f ( 3 ) + . . . + f ( 2017 ) = a b ; ( a ∈ ℝ ; b ∈ ℝ ) v ớ i a b tối giản. Mệnh đề nào dưới đây đúng?
A. b - a = 4035
B. a + b = - 1
C. a b < - 1
D. a ∈ - 2017 ; 2017
Cho hàm số f (x) đồng biến trên đoạn [-3;1] thoả mãn f(-3)=1,f(0)=2,f(1)=3. Mệnh đề nào dưới đây đúng?
A. 1<f(-2)<2.
B. 2<f(-2)<3.
C. f(-2)<1.
D. f(-2)>3.
Cho hàm số y=f(x) xác định trên ℝ và có đồ thị của hàm số f’(x) và các khẳng định sau:
(1). Hàm số y=f(x) đồng biến trên khoảng 1 ; + ∞
(2). Hàm số y=f(x) nghịch biến trên khoảng - ∞ ; - 2
(3). Hàm số y=f(x) nghịch biến trên khoảng - 2 ; 1 .
(4). Hàm số y = f x 2 đồng biến trên khoảng - 1 ; 0
(5). Hàm số y = f x 2 nghịch biến trên khoảng (1;2)
Số khẳng định đúng là
A. 4
B. 3
C. 2
D. 5