PB

Cho hàm số y=f(x)  có đạo hàm cấp hai liên tục trên đoạn [0;1] và thỏa mãn ∫ 0 1 e x f x d x = ∫ 0 1 e x f ' x d x = ∫ 0 1 e x f ' ' x d x ≠ 0 . Giá trị của biểu thức e . f ' 1 − f ' 0 e . f 1 − f 0  bằng

A.-2

B.-1

C.2

D.1

CT
10 tháng 10 2019 lúc 9:48

Đáp án D

∫ 0 1 e x f x d x = ∫ 0 1 e x f ' x d x = ∫ 0 1 e x f ' ' x d x = k ≠ 0

Đặt 

u = e x d v = f ' x d x ⇒ d u = e x d x v = f x ⇒ ∫ 0 1 e x f ' x d x = e x f x 0 1 − ∫ 0 1 e x f x d x

⇒ k = e . f 1 − f 0 − k ⇒ e f 1 − f 0 = 2 k .

Đặt 

u = e x d v = f ' ' x d x ⇒ d u = e x d x v = f ' x ⇒ ∫ 0 1 e x f ' ' x d x = e x f ' x 0 1 − ∫ 0 1 e x f ' x d x

⇒ k = e . f ' 1 − f ' 0 − k ⇒ e . f ' 1 − f ' 0 = 2 k .

Vậy  e . f ' 1 − f ' 0 e . f 1 − f 0 = 2 k 2 k = 1

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết