Bài 5c.: Tương giao hai đồ thị. Biện luận số nghiệm phương trình.

LD

Cho hàm số \(y=\frac{2x-1}{x+1}\) có đồ thị (C). Tìm tất cả các giá trị của tham số m để đường thẳng \(y=mx+2\) cắt (C) tại hai điểm phân biệt A, B sao cho tam giác OAB vuông tại O

LL
21 tháng 4 2016 lúc 16:53

Hoành độ giao điểm của d : y = mx+2 với (C) là nghiệm phương trình :

\(\begin{cases}x>0\\\log^2_2x-\log_2x^2-3\ge0\end{cases}\)
Dễ thấy với m = 0 thì (1) vô nghiệm. Đường thẳng d cắt (C) tại hai điểm phân biệt khi và chỉ khi (1) có 2 nghiệm phân biệt khác -1. Điều kiện là 

\(\begin{cases}\Delta>0\\m\left(-1\right)^2+m\left(-1\right)+3\ne0\end{cases}\) \(\Leftrightarrow m^2-12m>0\) \(\Leftrightarrow m<0\) hoặc m > 12 (*)

Với (*) giả sử x1, x2 là 2 nghiệm phân biệt của (1), khi đó tọa độ các giao điểm là : 

\(A\left(x_1;mx_1+2\right);B\left(x_2;mx_2+2\right)\)

Dễ thất điểm O không thuộc d nên ABO là một tam giác.

Tam giác ABO vuông tại O khi và chỉ khi :

\(\overrightarrow{OA}.\overrightarrow{OB}=0\Leftrightarrow\left(1+m^2\right)x_1x_2+2m\left(x_1+x_2\right)+4=0\)

Áp dụng định lí Viet ta có : \(x_1+x_2=-1;x_1x_2=\frac{3}{m}\)

Thay vào trên ta được :

\(m^2+4m+3=0\Leftrightarrow m=-3\) hoặc \(m=-1\) (thỏa mãn (*)

Vậy \(m=-3\) hoặc \(m=-1\)

Bình luận (0)

Các câu hỏi tương tự
PD
Xem chi tiết
BA
Xem chi tiết
VC
Xem chi tiết
NA
Xem chi tiết
PL
Xem chi tiết
NN
Xem chi tiết
ND
Xem chi tiết
TT
Xem chi tiết
PT
Xem chi tiết