Bài 5c.: Tương giao hai đồ thị. Biện luận số nghiệm phương trình.

BA

Cho hàm số \(y=\frac{-x+m}{x+2}\left(C_m\right)\)

Tìm các giá trị thực của tham số m để đường thẳng \(d:2x+2y-1=0\) cắt đồ thị \(\left(C_m\right)\) tại 2 điểm phân biệt A, B sao cho tam giác OAB có diện tích bằng 1 (O là gốc tọa độ)

HT
18 tháng 4 2016 lúc 22:22

Phương trình có hoành độ giao điểm \(\frac{-x+m}{x+2}=-x+\frac{1}{2}\Leftrightarrow\begin{cases}x\ne-2\\2x^2+x+2m-2=0\left(1\right)\end{cases}\)

Đường thẳng (d) cắt \(\left(C_m\right)\) tại 2 điểm A, B <=> (1) có 2 nghiệm phân biệt \(x\ne-2\)

\(\Leftrightarrow\begin{cases}\Delta=1-8\left(2m-2\right)>0\\2\left(-2\right)^2+\left(-2\right)+2m-2\ne0\end{cases}\)\(\Leftrightarrow\begin{cases}17-16m>0\\m\ne-2\end{cases}\)\(\Leftrightarrow\begin{cases}m<\frac{17}{16}\\m\ne-2\end{cases}\)

\(A\left(x_1;-x_1+\frac{1}{2}\right);B\left(x_2;-x_2+\frac{1}{2}\right);\) trong đó x1, x2 là 2 nghiệm phân biệt của phương trình (1)

Theo Viet ta có \(\begin{cases}x_1+x_2=-\frac{1}{2}\\x_1x_2=m-1\end{cases}\)

\(AB=\sqrt{\left(x_2-x_1\right)^2+\left(x_1-x_2\right)^2}=\sqrt{2\left[\left(x_1+x_2\right)^2-4x_1x_2\right]}=\frac{\sqrt{2\left(17-16m\right)}}{2}\)

\(d\left(O,d\right)=\frac{1}{2\sqrt{2}};S_{\Delta OAB}=\frac{1}{2}AB.d\left(O,d\right)=\frac{1}{2}.\frac{1}{2\sqrt{2}}.\frac{\sqrt{2\left(17-16m\right)}}{2}=1\)

\(\Leftrightarrow m=\frac{-47}{16}\)

Vậy \(m=\frac{-47}{16}\)

Bình luận (0)
MG
14 tháng 7 2016 lúc 21:01

Khoảng cách từ O đến d tính ntn v bn? @Hoàng Thị Tâm

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
PD
Xem chi tiết
LD
Xem chi tiết
NN
Xem chi tiết
NT
Xem chi tiết
NA
Xem chi tiết
VC
Xem chi tiết
NN
Xem chi tiết
TT
Xem chi tiết