PB

Cho hàm số y = x x 2 − 3  có đồ thị C . Có bao nhiêu điểm M thuộc đồ thị C  thỏa mãn tiếp tuyến tại M của C cắt  C và trục hoành lần lượt tại hai điểm phân biệt A (khác M) và B sao cho M là trung điểm của đoạn thẳng AB?

A. 2

B. 1

C. 0

D. 3

CT
20 tháng 5 2018 lúc 8:05

Đáp án A

Gọi M a ; a 3 − 3 a suy ra PTTT tại M là:  y = 3 a 2 − 3 x − a + a 3 − 3 a d

Ta có:

  d ∩ Ox = B − a 3 + 3 a 3 a 2 − 3 + a ; 0

Phương trình hoành độ giao điểm của d và C là : 

x 3 − 3 x = 3 a 2 − 3 x − a + a 3 − 3 a

⇔ x − a x 2 + ax + a 2 − 3 x − a = 3 a 2 − 3 x − a ⇔ x − a x 2 + a   x − 2 a 2 = 0 ⇔ x − a 2 x + 2 a = 0 ⇔ x = − 2 a ⇒ A − 2 a ; − 8 a 3 + 6 a

Do A, M, B luôn thuộc tiếp tuyến d nên để M là trung điểm của AB thì: 

2 y M = y A + y B

⇔ 2 a 3 − 6 a = − 8 a 3 + 6 a ⇔ 10 a 3 = 12 a ⇔ a = 0 a = ± 6 5

Do M ≠ 0 ⇒ a ≠ 0 ⇒ a = ± 6 5 .

Vậy có 2 điểm M thỏa mãn yêu cầu.

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
NH
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết