Cho hàm số y = x 3 - 3 x 2 + 4 có đồ thị (C), đường thẳng d : y = m x + 1 với m là tham số, đường thẳng △ : y = 2 x - 7 . Tìm tổng tất cả các giá trị của tham số m để đường thẳng (d) cắt đồ thị (C) tại 3 điểm phân biệt A(-1;0); B;C sao cho B,C cùng phía với ∆ và d B ; ∆ + d C ; ∆ = 6 5
A. 0
B. 8
C. 5
D. 4
Đồ thị (C) của hàm số y = x 3 - 3 x 2 + 4 và đường thẳng y = mx + m cắt nhau tại ba điểm phân biệt A(-1;0),B,C sao cho ∆ O B C có diện tích bằng 8 (O là gốc tọa độ). Mệnh đề nào đưới đây đúng ?
A. m là số nguyên tố.
B. m là số chẵn
C. m là số vô tỉ
D. m là số chia hết cho 3
Giá trị của để đường thẳng d: x + 3y + m = 0 cắt đồ thị hàm số y = 2 x - 3 x - 1 tại hai điểm sao cho tam giác vuông tại điểm A(1;0) là:
A. m = 6
B. m = 4
C. m = - 6
D. m = - 4
Giá trị của để đường thẳng d: x + 3y + m = 0 cắt đồ thị hàm số y = 2 x - 3 x - 1 tại hai điểm sao cho tam giác vuông tại điểm A(1;0) là:
A. m = 6
B. m = 4
C. m = - 6
D. m = - 4
Cho (C) là đồ thị của hàm số y = x - 2 x + 1 và đường thẳng d : y = m x + 1 . Tìm các giá trị thực của tham số m để đường thẳng d cắt đồ thị hàm số (C) tại hai điểm A,B phân biệt thuộc hai nhánh khác nhau của (C)
A. m ≥ 0
B. m < 0
C. m ≤ 0
D. m > 0
Cho hàm số y = 2 x + 3 x + 2 có đồ thị (C) và đường thẳng d: y = x + m Các giá trị của tham số m để đường thẳng (C) cắt đồ thị tại hai điểm phân biệt là:
A. m > 2
B. m > 6
C. m = 2
D. m < 2 hoặc m > 6
Cho hàm số y = 2 x + 3 x + 2 có đồ thị (C) và đường thẳng d ; y = x + m. Với giá trị nào của tham số m thì d cắt (C) tại hai điểm phân biệt?
A. m < -2
B. m < 2 hoặc m > 6
C. 2 < m < 6
D. m < -6
Đường thẳng d: y=x+4 cắt đồ thị hàm số y = x 3 + 2 m x 2 + ( m + 3 ) x + 4 tại 3 điểm phân biệt A(0;4), B và C sao cho diện tích tam giác MBC bằng 4, với M(1;3). Mệnh đề nào sau đây là đúng?
A. m ∈ - ∞ ; 0
B. m ∈ 0 ; 2
C. m ∈ 2 ; 4
D. m ∈ 4 ; + ∞
Biết rằng đồ thị (C) của hàm số y = 2 x + 1 x + 2 luôn cắt đường thẳng d : y = - x + m tại hai điểm phân biệt A và B. Tìm các giá trị thực của tham số m sao cho độ dài đoạn thẳng AB ngắn nhất
A. m = 1
B. m = 2 3
C. m = 4
D. m = 0