Từ bảng biến thiên suy ra hàm số đồng biến trên khoảng − ∞ ; 0 → Loại C
Hàm số đạt cực đại tại x = 0 => Chọn B, loại A
Từ bảng biến thiên suy ra hàm số đồng biến trên khoảng − ∞ ; 0 → Loại C
Hàm số đạt cực đại tại x = 0 => Chọn B, loại A
Cho hàm số y = f(x) xác định trên D = − 1 ; + ∞ \ 1 . Dưới đây là một phần đồ thị của y = f(x)
Hỏi trong các mệnh đề sau, có bao nhiêu mệnh đề đúng:
(I) Số điểm cực đại của hàm số trên tập xác định là 1.
(II) Hàm số có cực tiểu là -2 tại x = 1
(III) Hàm số đạt cực đại tại x = 2
(IV) Hàm số đạt cực đại tại x = -1
A. 0
B. 1
C. 2
D. 3
Cho hàm số y = f(x) có đồ thị như hình vẽ dưới đây:
Trong các khẳng định sau:
I. Đồ thị hàm số có tiệm cận ngang là đường thẳng y = 2
II. Hàm số đạt cực tiểu tại x = -2
III. Hàm số nghịch biến trong khoảng − ∞ ; 0 và đồng biến trong khoảng 0 ; ∞
IV. Phương trình f(x) = m có hai nghiệm phân biệt khi và chỉ khi . Có bao nhiêu khẳng định đúng
A. 1
B. 2
C. 3
D. 4
Cho hàm số y=f(x) có đạo hàm trên đoạn [a;b]. Ta xét các khẳng định sau:
1) Nếu hàm số f(x) đạt cực đại tại điểm x 0 ∈ a ; b thì f x o là giá trị lớn nhất của f(x) trên đoạn [a;b]
2) Nếu hàm số f(x) đạt cực đại tại điểm x 0 ∈ a ; b thì f x o là giá trị nhỏ nhất của f(x) trên đoạn [a,b]
3) Nếu hàm số f(x) đạt cực đại tại điểm x 0 và đạt cực tiểu tại điểm x 1 x 0 , x 1 ∈ a ; b thì ta luôn có f x 0 > f x 1
Số khẳng định đúng là?
A. 1
B. 2
C. 0
D. 3
Cho hàm số y=f(x)có đạo hàm trên đoạn [a,b]. Ta xét các khẳng định sau:
1) Nếu hàm số f(x) đạt cực đại tại điểm x 0 ∈ a ; b thì f x o là giá trị lớn nhất của f(x) trên đoạn[a,b]
2) Nếu hàm số f(x) đạt cực đại tại điểm x 0 ∈ a ; b thì f x o là giá trị nhỏ nhất của f(x) trên đoạn [a,b]
3) Nếu hàm số f(x) đạt cực đại tại điểm x 0 và đạt cực tiểu tại điểm x 1 x 0 , x 1 ∈ a ; b thì ta luôn có f x 0 > f x 1
Số khẳng định đúng là?
A. 1
B. 2
C. 0
D. 3
Cho hàm số f(x) xác định trên D = [ 0 ; 10 ) \ { 1 } có bảng biến thiên như hình vẽ, trong các mệnh đề sau có bao nhiêu mệnh đề đúng.
i. Hàm số có cực tiểu là 3.
ii. Hàm số đạt cực đại tại x=1 .
iii. Hàm số có giá trị cực đại là 12.
iv. Hàm số có cực tiểu là -6 .
A. 0
B. 1
C. 2
D. 3
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y=f' (x) như hình vẽ bên. Xét hàm số g(x)=f(x^2-3) và các mệnh đề sau:
1. Hàm số g(x) có 3 điểm cực trị.
2. Hàm số g(x)đạt cực tiểu tại x = 0.
3. Hàm số g(x)đạt cực đại tại x = 2.
4. Hàm số g(x)đồng biến trên khoảng (-2;0).
5. Hàm số g(x)nghịch biến trên khoảng (-1;1).
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
A. 1.
B. 4.
C. 3.
D. 2.
Cho hàm số y = x 2 3 + 2017 , có các khẳng định sau.
I. Hàm số luôn đồng biến trên − ∞ ; + ∞
II. Hàm số có một điểm cực tiểu là x = 0
III. Giá trị lớn nhất bằng 2017.
IV. Hàm số luôn nghịch biến trên − ∞ ; + ∞
Số khẳng định đúng là:
A. 0
B. 1
C. 2
D. 3
Cho hàm số y = f x có đạo hàm trên đoạn a ; b . Ta xét các khẳng định sau:
(1) Nếu hàm số f x đạt cực đại tại điểm x 0 ∈ a ; b thì f x 0 là giá trị lớn nhất của f x trên đoạn a ; b .
(2) Nếu hàm số f x đạt cực đại tại điểm x 0 ∈ a ; b thì f x 0 là giá trị nhỏ nhất của f x trên đoạn a ; b
(3) Nếu hàm số f x đạt cực đại tại điểm x 0 và đạt cực tiểu tại điểm x 1 ( x 0 , x 1 ∈ a ; b ) thì ta luôn có f x 0 > f x 1 .
Số khẳng định đúng là?
A. 1
B. 2
C. 0
D. 3
Cho hàm số y = f(x) xác định trên ℝ và có đồ thị của hàm số f ' ( x ) , biết f ( 3 ) + f ( 2 ) = f ( 0 ) + f ( 1 ) và các khẳng định sau:
Hàm số y = f(x) có 2 điểm cực trị.
Hàm số y = f(x) đồng biến trên khoảng ( - ∞ ; 0 ) .
Max [ 0 ; 3 ] f ( x ) = f ( 3 ) .
Min ℝ f ( x ) = f ( 2 ) .
Max [ - ∞ ; 2 ] f ( x ) = f ( 0 ) .
Số khẳng định đúng là
A. 2.
B. 3.
C. 4.
C. 4.
Trong bốn khẳng định sau, có bao nhiêu khẳng định luôn đúng với mọi hàm số f(x)?
(I): f(x) đạt cực trị tại x 0 thì f ' x 0 = 0.
(II): f x có cực đại, cực tiểu thì giá trị cực đại luôn lớn hơn giá trị cực tiểu.
(III): f x có cực đại thì có cực tiểu.
(IV): f x đạt cực trị tại x 0 thì f x xác định tại x 0 .
A. 2.
B. 4
C. 3
D. 1.