Tìm m để đồ thị hàm số y = x 4 - 2 m + 1 x 2 + m có ba điểm cực trị A; B; C sao cho OA = BC , trong đó O là gốc tọa độ; A là điểm cực đại, B và C là hai điểm cực tiểu của đồ thị hàm số.
A. m = 2 ± 2 2
B. m = 2 ± 2
C. m = 2 ± 2 3
D. m = 2 + 2 2
Tìm m để đồ thị hàm số y = x 4 - 2 m + 1 x 2 + m có ba điểm cực trị A, B, C sao cho OA = OB trong đó O là gốc tọa độ, A là điểm cực đại, B và C là hai điểm cực tiểu của đồ thị hàm số
A. m = 2 ± 2 2
B. m = 2 ± 2
C. m = 2 ± 2 3
D. m = 2 + 2 2
Xét các khẳng định sau:
(I). Nếu hàm số y = f(x) có giá trị cực đại là M và giá trị cực tiểu là m thì M > m
(II). Đồ thị hàm số y = a x 4 + b x 2 + c ( a ≠ 0 ) luôn có ít nhất một điểm cực trị
(III). Tiếp tuyến (nếu có) tại một điểm cực trị của đồ thị hàm số luôn song song với trục hoành.
Số khẳng định đúng là :
A. 0
B. 3
C. 2
D. 1
Biết M − 2 ; 5 , N 0 ; 13 là các điểm cực trị của đồ thị hàm số y = a x + b + c x + 1 . Tính giá trị của hàm số tại x = 2
A. - 13 3
B. 16 9
C. 16 3
D. 47 3
Cho hàm số y = f ( x ) = x 3 – ( 2 m - 1 ) x 2 + ( 2 - m ) x + 2 . Tập tất cả các giá trị của m để đồ thị hàm số y = f x có 5 điểm cực trị là a b ; c với a, b, c là các số nguyên và a b là phân số tối giản. Tính a+b+c
A. 11
B. 8
C. 10
D. 5
Cho hai hàm đa thức y = f(x), y = g(x) có đồ thị là hai đường cong ở hình vẽ. Biết rằng đồ thị hàm số y = f(x) có đúng một điểm cực trị là A, đồ thị hàm số y = g(x) có đúng một điểm cực trị là B và A B = 7 4 . Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng (-5;5) để hàm số y = f ( x ) - g ( x ) + m có đúng 5 điểm cực trị?
A. 1
B. 3
C. 4
D. 6
Cho đồ thị hàm số y = a x 3 + b x 2 + c x + d có điểm cực đại là A(-2;2), điểm cực tiểu là B(0;-2). Tìm tất cả các giá trị của m để phương trình a x 3 + b x 2 + c x + d = m có 3 nghiệm phân biệt.
A. m > 2
B. m < - 2
C. - 2 < m < 2
D. m = 2 m = - 2
Cho hàm số y = x 2 - 2 m x + 2 x - m có đồ thị C m , với m là tham số thực. Biết rằng hàm số đã cho có một điểm cực trị x 0 = 2 . Tìm tung độ điểm cực tiểu của đồ thị (C)
A. - 2
B. - 2 2
C. 2
D. 2 2
Cho hàm số: y=x-3-3(m+1)x2+9x+m-2 (1) có đồ thị là (Cm). Có bao nhiêu giá trị nguyên của tham số m để (Cm) có điểm cực đại, cực tiểu đối xứng với nhau qua đường thẳng y=1/2x ?
A. 0
B. 1
C. 2
D. 3