Cho hàm số y = x + 2 x − 2 có đồ thị là (C). Gọi I là giao điểm hai đường tiệm cận của (C). Tiếp tuyến của (C) cắt hai đường tiệm cận của (C) tại hai điểm A, B. Giá trị nhỏ nhất của chu vi đường tròn ngoại tiếp tam giác IAB bằng
A. 2 π
B. 8 π
C. 4 2 π
D. 4 π
Cho hàm số y = x - 1 x + 2 , gọi d là tiếp tuyến với đồ thị hàm số tại điểm có hoành độ bằng m - 2. Biết đường thẳng d cắt tiệm cận đứng của đồ thị hàm số tại điểm A(x1;y1) và cắt tiệm cận ngang của đồ thị hàm số tại điểm B(x2;y2). Gọi S là tập hợp các số m sao cho x2 + y1 = -5. Tính tổng bình phương các phần tử của S
A. 4
B. 0
C. 10
D. 9
Cho hàm số y = 2 x - 1 x - 2 có đồ thị (C). Gọi I là giao điểm của hai đường tiệm cận. Tiếp tuyến ∆ của (C) tại M cắt các đường tiệm cận tại A và B sao cho đường tròn ngoại tiếp tam giác IAB có diện tích nhỏ nhất. Khi đó tiếp tuyến ∆ của (C) tạo với hai trục tọa độ một tam giác có diện tích lớn nhất thuộc khoảng nào?
A. (26;27).
B. (29;30).
C. (27;28).
D. (28;29).
Cho hàm số y = 2 x - 1 x - 2 có đồ thị C . Gọi I là giao điểm của hai đường tiệm cận. Tiếp tuyến ∆ của (C) tại M cắt các đường tiệm cận tại A và B sao cho đường tròn ngoại tiếp tam giác IAB có diện tích nhỏ nhất. Khi đó tiếp tuyến ∆ của (C) tạo với hai trục tọa độ một tam giác có diện tích lớn nhất thuộc khoảng nào ?
A. 29 ; 30
B. 27 ; 28
C. 26 ; 27
D. 28 ; 29
1. Cho hàm số y=2x-1/x-1 . Lấy M thuộc C với XM=m . tiếp tuyến của C tại M cắt 2 đường tiệm cận tại A,B . Gọi I là giao của 2 đường tiệm cận . CMR : M là trung điểm của AB và tam giác IAB có diện tích không phụ thuộc vào M
2.cho y=x+2/x-3 tìm M thuộc C sao cho khoảng cách từ M đến 2 đường tiệm cận C bằng nhau
3. cho y = x+2/x-2 tìm M thuộc C sao cho M cách đều hai trục tọa độ . viết pttt của C biết tiếp tuyến đó đi qua A(-6;5)
4 . cho y = x+1/x-1 . CMR (d) : 2x-y+m=0 luôn cắt C tại A,B trên 2 nhánh của (C) . tìm m để AB ngắn nhất
Cho hàm số y = 2 x − 1 x − 2 có đồ thị (C) Gọi I là giao điểm của hai đường tiệm cận. Tiếp tuyến Δ của (C) tại M cắt các đường tiệm cận tại A và B sao cho đường tròn ngoại tiếp tam giác IAB có diện tích nhỏ nhất. Khi đó tiếp tuyến của Δ của (C)tạo với hai trục tọa độ một tam giác có diện tích lớn nhất thuộc khoảng nào
A. (27;28)
B. (28;29)
C. (26;27)
D. (29;30)
Cho hàm số y = x + 1 a x 2 + 1 có đồ thị (C). Tìm a để đồ thị hàm số có đường tiệm cận ngang và đường tiệm cận đó cách đường tiếp tuyến của (C) một khoảng bằng 2 - 1
A. a>0
B. a=2
C. a=3
D. a=1
Cho hàm số y = x + 1 a x 2 + 1 có đồ thị (C). Tìm giá trị a để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của (C) một khoảng bằng 2 - 1 ?
A. a > 0 .
B. a = 2 .
C. a = 3 .
D. a = 1 .
Cho hàm số y = x - 3 x + 1 có đồ thị (C) và một điểm A ∈ C . Tiếp tuyến với đồ thị tại A tạo với hai đường tiệm cận một tam giác có bán kính đường tròn nội tiếp lớn nhất bằng bao nhiêu
A. 2 + 2 2
B. 4 - 2 2
C. 3 - 2
D. 4 + 2 2