PB

Cho hàm số y = x - 1 x + 2   có đồ thị (C) . Gọi  I  là giao điểm của hai tiệm cận của (C) . Xét tam giác đều ABI có hai đỉnh A; B thuộc (C) , đoạn thẳng AB  có độ dài bằng

A.  6 .

B.  2 3 .

C. 2.

D.  2 2 .

CT
4 tháng 1 2017 lúc 5:30

+ Đồ thị hàm số đã cho có tiệm cận đứng là x= -2 và tiệm cận ngang là y= 1.

Giao điểm hai đường tiệm cận là I ( -2; 1) .

Ta có: 

A ( a ; 1 - 3 a + 2 ) ∈ ( C ) ,   B ( b ; 1 - 3 b + 2 ) ∈ ( C ) . I A → = ( a + 2 ; - 3 a + 2 ) ,   I B → = ( b + 2 ; - 3 b + 2 ) .

Đặt  a1== a+ 2 ; b1= b+ 2( a1≠ 0 ; b1≠0 ; a1 ≠ b1

Tam giác ABI đều khi và chỉ khi

Ta có (1) 

 

+ Trường hợp a1= b1 loại

+ Trường hợp a1= - b1 ; a1b1 = -3  (loại vì không thỏa (2) .

+ Trường hợp  a1 b1 =3 thay vào ( 2) ta được

3 + 9 3 a 1 2 + 9 a 1 2 = 1 2 ⇔ a 1 2 + 9 a 1 2 = 12 .

Vậy AB=IA= a 1 2 + 9 a 1 2 = 2 3 .

Chọn B.

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
MD
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết