PB

Cho hàm số y = x + 1 x − 1  có đồ thị (C). Giả sử A, B là hai điểm thuộc (C) và đối xứng với nhau qua giao điểm của hai đường tiệm cận. Dựng hình vuông AEBF. Tìm diện tích nhỏ nhất của hình vuông AEBF.

A.  S min = 8 2 .

B.  S min = 4 2 .

C.  S min = 8.

D.  S min = 16.

CT
21 tháng 8 2017 lúc 16:13

Đáp án C.

Gọi A a ; a + 1 a − 1 ∈ C  vì I 1 ; 1   là trung điểm của  A B ⇒ B 2 − a ; a − 3 a − 1

Khi đó:

A B → = 2 − 2 a ; − 4 a − 1 ⇒ A B = 4 a − 1 2 + 16 a − 1 2 = 2 a − 1 2 + 4 a − 1 2 .

Áp dụng bắt đẳng thức A M − G M , ta có  a − 1 2 + 4 a − 1 2 ≥ 2 a − 1 2 . 4 a − 1 2 = 4.

Suy ra:

S A E B F = A E 2 = 1 2 A B 2 ≥ 1 2 .4 2 = 8.

Vậy  S min = 8.

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết