PB

Cho hàm số y = - x + 1 2 x - 1  có đồ thị là (C) , đường thẳng d: y= x+ m. Với mọi m ta luôn có d cắt (C)  tại 2 điểm phân biệt A: B . Gọi k1; k2  lần lượt là hệ số góc của các tiếp tuyến với ( C)  tại A; B . Tìm m  để tổng k1+ k2  đạt giá trị lớn nhất.

A. -2

B. -1

C. 1

D. 2

CT
9 tháng 11 2017 lúc 13:01

+ Phương trình hoành độ giao điểm của d  và (C)  là

+ Theo định lí Viet ta có  x1+ x2= -m ; x1.x2= ( -m-1) /2.

 Gọi A( x1; y1) ; B( x2: y 2)  .

+ Ta có y ' = - 1 ( 2 x - 1 ) 2  , nên tiếp tuyến của ( C)  tại A và B  có hệ số góc lần lượt là

 

k 1 = - 1 ( 2 x 1 - 1 ) 2 ;   k 2 = - 1 ( 2 x 2 - 1 ) 2

Dấu "=" xảy ra khi và chỉ khi m= -1.

Vậy k1+ k2 đạt giá trị lớn nhất bằng - 2 khi m= -1.

Chọn B.

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết