PB

Cho hàm số y = x + 1 2 x + 1  có đồ thị C . Tìm tất cả các giá trị thực của tham số m để đường thẳng d : y = m x + m + 1 2  cắt đồ thị C  tại hai nghiệm phân biệt A, B sao cho O A 2 + O B 2  đạt giá trị nhỏ nhất (O là gốc tọa độ).

A. m = 1

B. m > 0

C. m ± 1

D. m = 2

CT
9 tháng 3 2018 lúc 14:51

Đáp án A

Xét phương trình hoành độ giao điểm:

        x + 1 2 x + 1 = m x + m + 1 2 ⇔ 4 m x 2 + 4 m x + m − 1 = 0   1

Phương trình (1) có 2 nghiệm  x A ; x B ⇔ Δ ' = 4 m 2 − 4 m m − 1 = 4 m > 0 ⇔ m > 0.

Khi đó giao điểm của 2 đồ thị là A x A ; m x A + m + 1 2 ; B x B ; m x B + m + 1 2  

với  x A + x B = − 1 ; x A . x B = m − 1 4 m

Ta có O A 2 + O B 2 = x A 2 + m x A + m + 1 2 2 + x B 2 + m x B + m + 1 2 2 = m 2 + 2 m + 1 2 m = 1 + 1 2 m + 1 m ≥ 1 + 1 2 .2 = 2

( vì m > 0 ,  theo Cauchy ta có m + 1 m ≥ 2 . Dấu bằng xảy ra khi  m = 1

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết