Cho hàm số y = f(x) xác định trên ℝ , thỏa mãn f x > 0 , ∀ x ∈ ℝ và f’(x) + 2f(x) = 0. Tính f(-1), biết rằng f(1) = 1.
A. e - 2
B. e 3
C. e 4
D. 3
Cho hàm số y=f(x) có đạo hàm liên tục trên ℝ thỏa mãn f'(x) -xf(x) = 0, f x > 0 , ∀ x ∈ ℝ và f(0) = 1. Giá trị của f(1) bằng?
A. 1 e .
B. 1 e .
C. e .
D. e.
Cho hàm số y=f(x) có đạo hàm liên tục trên R thỏa mãn x f ( x ) . f ' ( x ) = f 2 ( x ) - x , ∀ x ∈ ℝ và f(2)=1 .Tích phân bằng
A. 3 2
B. 4 3
C. 2
D. 4
Cho hàm số f(x) xác định trên ℝ \ - 2 ; 1 thỏa mãn f ' ( x ) = 1 x 2 + x - 2 ; f ( 0 ) = 1 3 và f(3)-f(-3) = 0 Tính giá trị của biểu thức T = f(-4)+f(-1)-f(4)
Cho hàm số f(x) liên tục trên R thỏa mãn điều kiện: f ( 0 ) = 2 3 , f ( x ) > 0 , ∀ x ∈ ℝ và f ( x ) . f ' ( x ) = ( 2 x + 1 ) 1 + f 2 ( x ) , ∀ x ∈ ℝ . Khi đó giá trị f(1) bằng:
Cho hàm số f(x) xác định trên ℝ \ 1 2 thỏa mãn f ' ( x ) = 2 2 x - 1 ; f ( 0 ) v à f ( 1 ) = 2 Giá trị của biểu thức f ( - 1 ) + f ( 3 ) bằng:
A. 4+ln15
B. 2+ln15
C. 3+ln15
D. ln15
Cho hàm số f(x) liên tục trên ℝ + thỏa mãn f ' ( x ) ≥ x + 1 x và f(1) = 1 Khẳng định nào sau đây là đúng?
Cho hàm số y = f(x) có đạo hàm f’(x) liên tục trên đoạn [0; 1] thỏa mãn f(1) = 1 và I = ∫ 0 1 f x d x = 2 . Tính tích phân I = ∫ 0 1 f ' x d x
A. I = -1.
B. I = 1.
C. I = 2.
D. I = -2.
Cho hàm số y=f(x) liên tục trên ( 0 ; + ∞ ) và thỏa mãn 2xf'(x)+f(x)= 3 x 2 x biết f(1)= 1 2 . Gía trị f(2) bằng