Cho hàm số y = f(x) với tập xác định D. Trong các phát biểu sau đây phát biểu nào đúng?
A. Giá trị lớn nhất của hàm số đã cho là số lớn hơn mọi giá trị của hàm số.
B. Nếu f(x) ≤ M, ∀x ∈ D thì M là giá trị lớn nhất của hàm số y = f(x).
C. Số M = f( x 0 ) trong đó x 0 ∈ D là giá trị lớn nhất của hàm số y = f(x) nếu M > f(x), ∀x ∈ D
D. Nếu tồn tại x 0 ∈ D sao cho M = f( x 0 ) và M ≥ f(x),∀x ∈ D thì M là giá trị lớn nhất của hàm số đã cho.
Cho hàm số \(y=f\left(x\right)=x^2+6x+5\). Gọi \(m,M\) lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của hàm số \(y=f\left(f\left(x\right)\right)\) với \(x\in\left[-3;0\right]\). Tính tổng \(S=m+M.\)
Câu 1:
Giải các bất phương trình sau:
Câu 2:
Cho f(x) = 4x2 + 2(1 - m)x + m2 - 3m + 1
a. Tìm các giá trị của tham số m để phương trình f(x) = 0 có hai nghiệm trái dấu.
b. Tìm các giá trị của tham số m để hàm số y= √f(x) có tập xác định là D = R.
Cho f(x)=x-3.Tìm tất cả các giá trị của x để f(x)>0
A.x ∈ [3;+∞)
B.x ∈ (-∞;3]
C.x ∈ (3;+∞)
D.x ∈ (-∞;-3)
Câu 48. Cho y=|x+1|+|x−2||x+1|+|x−2|và các mệnh đề
Câu 49. Hàm số y=-√|2x+3||2x+3| nghịch biến trên khoảng.
Câu 50. Hàm số y = 2 là hàm số gì.
A. Đồng biến B. Nghịch biến
C. không đồng biến cũng không nghịch biến D. Đáp án khác
Cho hàm số f(x) ={\(\dfrac{-2\left(x-3\right)}{\sqrt{x^2-1}}\)\(\dfrac{-1\le x< 1}{x\ge1}\)giá trị của f(-1), f(1) lần lượt là
A. 0 và 8 B. 8 và 0 C. 0 và 0 D. 8 và 4
1.tìm m để phương trình \(x^2+\dfrac{1}{x^2}-2m\left(x+\dfrac{1}{x}\right)+1+2m=0\left(x\ne0\right)\) có nghiệm
2. cho hàm số y=f(x)=\(x^2-4x+3\)
tìmcác giá trị nguyên của m để
\(f^2\left(\left|x\right|\right)+\left(m-2\right)f\left(\left|x\right|\right)+m-3=0\) có 6 nghiệm phân biệt
Cho biểu thức f(x)=( |m|-8)x^4+6x^3-(x-1)^2-(x+1)^2 có bao nhiêu giá trị nguyên của m để tam thức đã cho không có giá trị nào của x sao cho dấu của nó dương?
A.4 B. 5 C. 8 D.7