Chọn A.
Phương pháp: Theo công thức tính diện tích hình phẳng.
Cách giải: Chọn A.
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chọn A.
Phương pháp: Theo công thức tính diện tích hình phẳng.
Cách giải: Chọn A.
Cho hàm số y = f(x) liên tục trên đoạn [a;b]. Diện tích S của hình phẳng giới hạn bởi đồ thị của hàm số y = f(x), trục hoành và hai đường thẳng x = a, x = b (a<b) được tính theo công thức:
A. S = ∫ a b f ( x ) d x
B. S = b ∫ a b f ( x ) d x
C. S = ∫ a b f ( x ) d x
D. S = ∫ a b f ( x ) d x
Cho hàm số y = f(x) xác định và liên tục trên đoạn a ; b . Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x) trục hoành và hai đường thẳng x = a, x = b được tính theo công thức:
A. S = ∫ a b f x d x
B. S = ∫ a b f x d x
C. S = - ∫ a b f x d x
D. S = ∫ b a f x d x
Cho hàm số y = f ( x ) liên tục trên đoạn [a;b]. Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y = f ( x ), trục hoành và hai đường thẳng x = a, x = b ( a > b ). Thể tích của khối tròn xoay tạo thành khi quay D quanh trục hoành được tính theo công thức
A. V = π ∫ a b f 2 x dx
B. V = 2 π ∫ a b f 2 x dx
C. V = π 2 ∫ a b f 2 x dx
D. V = π 2 ∫ a b f x dx
Cho hai hàm số y = f(x) và y = g(x) liên tục trên đoạn [ a; b] Gọi D là hình phẳng giới hạn bởi đồ thị hàm số đó và các đường thẳng x = a , x = b a < b . Diện tích S của hình phẳng D được tính theo công thức
A. S = ∫ a b f x − g x d x
B. S = ∫ a b g x − f x d x
C. S = ∫ a b f x − g x d x
D. S = ∫ a b f x − g x d x
Cho hàm số y=f(x) liên tục trên đoạn a ; b và f(x)>0 ∀ x ∈ a ; b Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y=f(x), trục hoành và 2 đường thẳng x=a, x=b (a<b). Thể tích của vật thể tròn xoay khi quay D quanh Ox được tính theo công thức
A. ∫ a b f ( x 2 ) d x
B. π ∫ a b f ( x 2 ) d x
C. π ∫ a b [ f ( x ) ] 2 d x
D. ∫ a b [ f ( x ) ] 2 d x
Cho hàm số y = f(x) liên tục trên đoạn [a; b]. Gọi D là hình phẳng giới hạn bởi đồ thị của hàm số y = f(x) trục hoành và hai đường thẳng x = a , x = b a < b . Thể tích của khối tròn xoay tạo thành khi quay D quanh trục hoành được tính theo công thức
A. V = π ∫ a b f 2 x d x
B. V = π 2 ∫ a b f 2 x d x
C. V = π 2 ∫ a b f x d x
D. V = 2 π ∫ a b f 2 x d x
Cho hàm số y=f(x) liên tục trên đoạn [a;b]. Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y=f(x) trục hoành và hai đường thẳng x=a, x=b (a<b). Thể tích của khối của khối tròn xoay tạo thành khi quay D quanh trục hoành được tính theo công thức:
A. V = π ∫ a b f 2 x dx
B. V = 2 π ∫ a b f 2 x dx
C. V = π 2 ∫ a b f 2 x dx
D. V = π 2 ∫ a b f x dx
Cho hàm số y = f (x) liên tục trên [a;b] Diện tích hình phẳng S giới hạn bởi đường cong y = f (x) trục hoành và các đường thẳng x = a, x = b (a < b) được xác định bởi công thức nào sau đây
A. S = ∫ a b f x d x
B. S = ∫ b a f x d x
C. S = ∫ a b f x d x
D. S = ∫ a b f x d x
Diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = f(x) liên tục trên a ; b trục hoành và hai đường thẳng x = a , x = b a < b cho bởi công thức:
A. S = ∫ a b f x d x
B. S = π ∫ a b f x d x
C. S = π ∫ a b f 2 x d x
D. S = ∫ a b f x d x
Cho hàm số y = f(x) liên tục trên [a;b]. Diện tích hình phẳng (H) giới hạn bởi đồ thị hàm số y = f(x), trục hoành và hai đường thẳng x=a, x=b được tình theo công thức.
A. S = π ∫ a b f x 2 d x .
B. S = ∫ a b f x d x .
C. S = π ∫ a b f x d x .
D. S = ∫ a b f x d x .