Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho hàm số y=f(x) có đạo hàm trên R. Đồ thị hàm số y=f '(x) như hình vẽ bên dưới. Hỏi đồ thị hàm số g(x)=f(x)-x có bao nhiêu điểm cực trị?
A. 1
B. 2
C. 3
D. 4
Biết rằng đồ thị hàm số y = f(x) có hình dạng như hình vẽ bên. Hỏi đồ thị hàm số y = |f(x)| có bao nhiêu điểm cực trị?
A. 0
B. 1
C. 2
D. 3
Cho hàm số f(x) có đồ thị như hình vẽ bên. Có bao nhiêu số nguyên m>-10 để hàm số y=f(|x|+m) có 5 điểm cực trị.
A. 12.
B. 11.
C. 14.
D. 13.
Cho hàm số y=f(x). Hàm số y=f'(x) có đồ thị như hình vẽ bên.
Hàm số y=f( x 2 ) có bao nhiêu điểm cực đại ?
A. 3.
B. 5.
C. 2.
D. 1.
Cho hàm số y = f(x). Hàm số y = f’(x) có đồ thị như hình bên. Hàm số y = f(x2) có bao nhiêu điểm cực trị?
A. 3
B. 1
C. 5
D. 2
Cho hàm số y = f(x) liên tục trên R, hàm số y = f'(x) có đồ thị như hình vẽ bên. Hỏi hàm số y = 2 f x − x 2 + 2 x + 2018 có bao nhiêu điểm cực trị?
A. 1
B. 2
C. 3
D. 4
Cho hàm số y = f ( x ; m ) có đồ thị hàm số y = f ' ( x ; m ) như hình vẽ
Biết f ( a ) > f ( c ) > 0 ; f ( b ) < 0 < f ( e ) Hỏi hàm số y = f ( x , m ) có bao nhiêu điểm cực trị?
A. 5
B. 7
C. 9
D. 10
Cho hàm số f(x) có đồ thị hàm số y = f’(x) được cho như hình vẽ bên. Hàm số y = f x + 1 2 x 2 - f 0 có nhiều nhất bao nhiêu điểm cực trị trong khoảng (-2;3)?
A. 6
B. 2
C. 5
D. 3
Cho hàm số y=f(x) có đồ thị đạo hàm y=f’(x) được cho như hình vẽ bên và các mệnh đề sau:
(1). Hàm số y=f(x) có duy nhất 1 điểm cực trị
(2). Hàm số y=f(x) nghịch biến trên khoảng (-2;1)
(3). Hàm số y=f(x) đồng biến trên khoảng 0 ; + ∞
(4). Hàm số g x = f x + x 2 có 2 điểm cực trị.
Số mệnh đề đúng là
A. 1
B. 3
C. 4
D. 2
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y=f' (x) như hình vẽ bên. Xét hàm số g(x)=f(x^2-3) và các mệnh đề sau:
1. Hàm số g(x) có 3 điểm cực trị.
2. Hàm số g(x)đạt cực tiểu tại x = 0.
3. Hàm số g(x)đạt cực đại tại x = 2.
4. Hàm số g(x)đồng biến trên khoảng (-2;0).
5. Hàm số g(x)nghịch biến trên khoảng (-1;1).
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
A. 1.
B. 4.
C. 3.
D. 2.