+ Với x ≤ 0 thì ta có hàm số luôn xác định.
Do đó tập xác định của hàm số
+Với x> 0 thì ta có hàm số luôn xác định.
Do đó tập xác định của hàm số
Kết hợp cả 2 trường hợp; vậy tập xác định là
Chọn C.
+ Với x ≤ 0 thì ta có hàm số luôn xác định.
Do đó tập xác định của hàm số
+Với x> 0 thì ta có hàm số luôn xác định.
Do đó tập xác định của hàm số
Kết hợp cả 2 trường hợp; vậy tập xác định là
Chọn C.
Cho hàm số y=\(\sqrt{x^4-x^2+1+mx\sqrt{2x^4+2}}.\) . Tìm tất cả các giá trị của tham số m để hàm số có tập xác định là tập số thực R. GIẢI GIÚP MÌNH VỚI!!
Cho hàm số y=\(\sqrt{x+m-1}+\sqrt{m-3x}\).Tìm tất cả các giá trị nguyên của tham số m để hàm số đã cho có tập xác định là R.
Tìm tất cả các giá trị của m đểm hàm số xác định với mọi x ϵ R
(m-1)x2-2(m-2)x+2-m > 0
Tìm a để hàm số xác định trên tập K đã chỉ ra:
a) \(y=\frac{2x+1}{x^2-6x+a+2}\) ; K=R
b) \(y=\sqrt{x-a}+\sqrt{2x-a-1}\) ; K=(0;+vô cực)
p/s: giúp 1 câu cũng đc :((
I. HÀM SỐ, TXĐ, CHẴN LẺ, ĐƠN ĐIỆU, ĐỒ THỊ.
1. TXĐ CỦA HÀM SỐ
Câu 1.Tìm tập xác định của hàm số y=\(\dfrac{\sqrt{x-1}}{x-3}\)
Câu 2.Tìm tập xác định của hàm số y= \(\sqrt[3]{x-1}\)
Câu 3. Tìm tập xác định của hàm số y=\(\dfrac{\sqrt[3]{1-x}+3}{\sqrt{x+3}}\)
Câu 4. Tìm tập xác định của hàm số y=\(\sqrt{\left|x-2\right|}\)
Tìm tập xác định của hàm số y = x 2 + x - 2 x 2 - 1
A. x < -2; x ≤ -2;
B. x ≤ -2; x ≥ -1
C. x ≤ -2; x ≤ -2;
D. x ≤ -2; -1 < x < 1; x > 1
Câu 1: Cho hàm số y=x-1 Trong các khẳng định sau, khẳng định nào sai?
A. Đồ thị cắt: trục hoành tại A ( 1;0 ) , trục tung tại B (0; -1) .
B.Hàm số đồng biến trên R .
C. Đồ thị không qua gốc tọa độ.
D.Hàm số nghịch biến trên R
Tìm tất cả các giá trị của tham số m để tập xác định của hàm số
y = m x - 2 - x + 1 là một đoạn trên trục số.
A. m<-2
B. m>-2
C. m>2
D. m<2
Bài 4.Tập hợp nào dưới đây là tập rỗng:
a)A={\(\varnothing\)}
b)B={x\(\in\)R|x2+1=0}
c)C={x\(\in\)R|x< -3 và x>6}
Bài 5.Tìm tất cả tập con của các tập hợp sau:
a)A={3;5;7}
b)B={a;b;c;d}
c)C={\(\varnothing\)}
d)D={x\(\in\)R|(x-1)(x2-5x+6)=0}
Bài 6. Cho các tập hợp: A={a;b;c;d}, B={a;b}. Hãy tìm tất cả các tập X sao cho: B\(\subset\)X\(\subset\)A.