Đáp án C
Đồ thị (C) có trục đối xứng là trục Oy.
Đáp án C
Đồ thị (C) có trục đối xứng là trục Oy.
Tìm số phát biểu đúng trong các phát biểu sau:
(1) Đồ thị hàm số y= x α với α > 0 nhận trục Ox làm tiệm cận ngang và nhận trục là tiệm cận đứng.
(2) Đồ thị hàm số y= x α với α > 0 không có tiệm cận.
(3) Đồ thị hàm số y = log a x với 1 < a ≠ 1 nhận trục Oy làm tiệm cận đứng và không có tiệm cận ngang.
(4) Đồ thị hàm số y=ax với 1 < a ≠ 1 nhận trục Ox làm tiệm cận ngang và không có tiệm cận đứng.
A. 2.
B. 1
C. 4
D. 3.
Cho hàm số y = x − 2 x + 1 . Xét các phát biểu sau đây
+) Đồ thị hàm số nhận điểm I − 1 ; 1 làm tâm đối xứng.
+) Hàm số đồng biến trên tập ℝ \ − 1 .
+) Giao điểm của đồ thị với trục hoành là điểm A 0 ; − 2
+) Tiệm cận đứng là y = 1 và tiệm cận ngang là x = − 1
Trong các phát biểu trên, có bao nhiêu phát biểu đúng?
A. 1
B. 3
C. 2
D. 4
Cho hàm số y = x − 1 x − 3 . Xét các mệnh đề sau:
(1) Hàm số nghịch biến trên D = ℝ \ 3
(2) Đồ thị hàm số có một tiệm cận đứng là x=1, tiệm cận ngang là y=3.
(3) Hàm số đã cho không có cực trị
(4) Đồ thị hàm số nhận giao điểm I(3;1) của hai đường tiệm cận làm tâm đối xứng.
Chọn các mệnh đề đúng ?
A. (1), (3), (4)
B. (3), (4)
C. (2), (3), (4)
D. (1), (4)
Đồ thị hàm số nào sau đây có trục đối xứng là Oy?
A. y = sin 2x
B. y = cos 2x
C. y = tan x
D. y = cot x
Cho đồ thị hàm số y = 2 x là đồ thị ( C 1 ) như hình vẽ, ( C 2 ) là đồ thị đối xứng của ( C 1 ) qua trục Oy. Một đường thẳng d song song với Oy cắt đồ thị ( C 1 ), ( C 2 ) tại 2 điểm A, B như hình vẽ có tung độ lần lượt là a, b. Giá trị nhỏ nhất của biểu thức P = 4 a 3 + b 3 - 3 a + b 2 a + 2 b - 3 là
A. 14
B. 0
C. 4
D. - 2
Cho hàm số y = 2 x + 1 x + 1 (C), gọi I là tâm đối xứng của đồ thị (C) và M(a;b) là một điểm thuộc đồ thị. Tiếp tuyến của đồ thị (C) tại điểm M cắt hai tiệm cận của đồ thị (C) lần lượt tại hai điểm A và B. Để tam giác IAB có bán kính đường tròn nội tiếp lớn nhất thì tổng a+b gần nhất với số nào sau đây?
A. -3.
B. 0.
C. 3.
D. 5.
Cho a là một số thực dương khác 1. Có bao nhiêu mệnh đề đúng trong các mệnh đề sau:
1. Hàm số y= l o g a x có tập xác định là D= ( 0 ; + ∞ ) .
2. Hàm số y= l o g a x là hàm đơn điệu trên khoảng ( 0 ; + ∞ ) .
3. Đồ thị hàm số y= l o g a x và đồ thị hàm số y = a x đối xứng nhau qua đường thẳng y= x.
4. Đồ thị hàm số y= l o g a x nhận Ox là một tiệm cận
A. 4
B. 1
C. 3
D. 2
Cho các mệnh đề sau
I. Đồ thị hàm số y = ax + b c x + d a c ≠ 0 , a d − c b ≠ 0 nhận giao điểm hai đường tiệm cận làm tâm đối xứng
II. Số điểm cực trị tối đa của hàm số trùng phương là ba
III. Bất kỳ đồ thị hàm số nào cũng đều phải cắt trục tung và trục hoành
IV. Số giao điểm của hai đồ thị hàm số y = f x và y = g x là số nghiệm phân biệt của phương trình: f x = g x
Trong các mệnh đề trên mệnh đề đúng là
A. (I),(III)
B. (II),(III)
C. (I) (II),(III)
D. (I) (II),(IV)
Cho hàm số y = f(x) =(ax+b)/(cx+d)(a,b,c,d ϵ R;c ≠ 0;d ≠ 0) có đồ thị (C). Đồ thị của hàm số y = f’(x) như hình vẽ dưới đây. Biết (C) cắt trục tung tại điểm có tung độ bằng 2. Tiếp tuyến của (C) tại giao điểm của (C) và trục hoành có phương trình là
A. x – 3y +2 = 0
B. x + 3y +2 = 0
C. x – 3y - 2 = 0
D. x + 3y -2 = 0
Xét các khẳng định sau:
(I). Nếu hàm số y = f(x) có giá trị cực đại là M và giá trị cực tiểu là m thì M > m
(II). Đồ thị hàm số y = a x 4 + b x 2 + c ( a ≠ 0 ) luôn có ít nhất một điểm cực trị
(III). Tiếp tuyến (nếu có) tại một điểm cực trị của đồ thị hàm số luôn song song với trục hoành.
Số khẳng định đúng là :
A. 0
B. 3
C. 2
D. 1